全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数的应用教学设计一、教学分析(一)教学内容分析二次函数的图像和性质是人教版九年级数学下册的内容,是在学生学习了二次函数的基本概念及的图像和性质之后引入的新内容。本节课的教学内容既是对的图像和性质的引申,也是后面研究其它模块知识的基础。所以,学习本节内容我们既要对前段的内容进行升华,又要对后段内容进行启发。(二)教学对象分析九年级的学生在前面的学习过程中已经接触过一次函数和反比例函数的内容,从学习情况看,他们对函数的理解和掌握情况并不理想。通过课下的了解,学生们对二次函数有一定的畏难情绪,对学习非常的不利,掌握图像和性质是本节应用的基础。所以我们在教学过程中,要想方设法的调动学生的积极性,帮助他们突破难点。二、教学目标设计 (一)知识与技能:通过本节学习,巩固二次函数的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。 (二)过程与方法: 能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。 (三)情感、态度与价值观:1、在进行探索活动过程中发展学生的探究意识,逐步养成合作交流的习惯。 2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。 三、教学方法设计 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。 四、教学过程设计 (一)导学提纲 设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。(二)前情回顾: 1、复习二次函数的图象、顶点坐标、对称轴和最值 。2、抛物线在什么位置取最值? (三)适当点拨,自主探究 1.在创设情境中发现问题 做一做:请你画一个周长为40厘米的矩形,算算它的面积是多少,再和同学比比,发现了什么,谁的面积最大, 2、在解决问题中找出方法 想一想:某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大, (问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题,目的在于让学生体会其应用价值我们要学有用的数学知识。学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。) 3、在巩固与应用中提高技能 例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大, (设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。) 解:设垂直于墙的边AD=x米,则AB=(32-2x) 米,设矩形面积为y米,得到: ,错解,由顶点公式得: x=8米时,y最大=128米 而实际上定义域为,由图象或增减性可知x=11米时, y最大=110米。 (设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。) (四)总结交流: (1) 同学们经历刚才的探究过程,想想解决此类问题的思路是什么,. (2)在探究发现这些判定方法的过程中运用了什么样的数学方法? (五)我来试一试: 如图在中,点P在斜边AB上移动,M,N分别为垂足,已知AC=1,AB=2,求: (1)何时矩形PMCN的面积最大,把最大面积是多少?(2)当AM平分时,求矩形PMCN的面积. 作业:课本随堂练习 、习题1,2,3 (六)板书设计 二次函数的应用面积最大问题 五、课后反思 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。 本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流, 让学生通过掌握求面积最大这一类题,学会用建模的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年新疆交通职业技术学院单招综合素质考试必刷测试卷及答案解析(名师系列)
- 2026年南京工业职业技术大学单招职业技能考试必刷测试卷附答案解析
- 2026年云南理工职业学院单招职业技能考试必刷测试卷带答案解析
- 2026年丽水职业技术学院单招综合素质考试必刷测试卷附答案解析
- 2026年云南新兴职业学院单招职业技能测试题库带答案解析
- 2026年安徽广播影视职业技术学院单招职业适应性考试必刷测试卷附答案解析
- 2026年九江职业技术学院单招职业适应性测试题库带答案解析
- 房屋广告位合同范本
- 房屋拍卖买卖协议书
- 房屋改建的合同范本
- 辽宁华电高科环保技术有限公司油泥煤循环流化床协同资源化综合利用试点项目环境影响报告书
- 20ZJ401 楼梯栏杆标准图集
- 阳光运动身体好
- LPG加气站安全操作手册
- 内科学-原发性慢性肾上腺皮质功能减退症、嗜铬细胞瘤
- YS/T 621-2007百叶窗用铝合金带材
- GB/T 8918-1996钢丝绳
- GB/T 35252-2017动植物油脂2-硫代巴比妥酸值的测定直接法
- GB/T 16898-1997难燃液压液使用导则
- GB/T 15114-1994铝合金压铸件
- GB/T 1408.1-2016绝缘材料电气强度试验方法第1部分:工频下试验
评论
0/150
提交评论