第十讲无穷级数ppt课件_第1页
第十讲无穷级数ppt课件_第2页
第十讲无穷级数ppt课件_第3页
第十讲无穷级数ppt课件_第4页
第十讲无穷级数ppt课件_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十讲 无穷级数,一、数项级数的审敛法,二、幂级数,三、傅里叶级数,一、常数项级数的概念,引例1. 用圆内接正多边形面积逼近圆面积.,依次作圆内接正,边形,这个和逼近于圆的面积 A .,设 a0 表示,即,内接正三角形面积,ak 表示边数,增加时增加的面积,则圆内接正,机动 目录 上页 下页 返回 结束,定义:,给定一个数列,将各项依,即,称上式为无穷级数,,其中第 n 项,叫做级数的一般项,级数的前 n 项和,称为级数的部分和.,次相加, 简记为,收敛 ,则称无穷级数,并称 S 为级数的和,记作,机动 目录 上页 下页 返回 结束,当级数收敛时, 称差值,为级数的余项.,则称无穷级数发散 .

2、,显然,机动 目录 上页 下页 返回 结束,例1. 讨论等比级数,(又称几何级数),( q 称为公比 ) 的敛散性.,解: 1) 若,从而,因此级数收敛 ,从而,则部分和,因此级数发散 .,其和为,机动 目录 上页 下页 返回 结束,2). 若,因此级数发散 ;,因此,n 为奇数,n 为偶数,从而,综合 1)、2)可知,时, 等比级数收敛 ;,时, 等比级数发散 .,则,级数成为,不存在 , 因此级数发散.,机动 目录 上页 下页 返回 结束,例2. 判定下列级数的敛散性,(1),(3),(2),例3. 判别下列级数的敛散性:,解: (1),所以级数 (1) 发散 ;,技巧:,利用 “拆项相消

3、” 求和,机动 目录 上页 下页 返回 结束,(2),所以级数 (2) 收敛, 其和为 1 .,技巧:,利用 “拆项相消” 求和,机动 目录 上页 下页 返回 结束,二、无穷级数的基本性质,说明:,(2) 若两级数中一个收敛一个发散 , 则,必发散 .,但若二级数都发散 ,不一定发散.,例如,(1) 性质1表明收敛级数可逐项相加或减 .,(用反证法可证),机动 目录 上页 下页 返回 结束,例4.利用性质判断下列级数的敛散性:,解: 考虑加括号后的级数,发散 ,从而原级数发散 .,机动 目录 上页 下页 返回 结束,(1),(2),解:,所以级数 (2) 发散,(3),解:,所以级数 (3)

4、发散,(1),(2),思考与练习,判断下列级数的敛散性:,(3),(4),若 收敛,,判断下列级数的敛散性:,三、正项级数及其审敛法,若,定理 1. 正项级数,收敛,部分和序列,有界 .,则称,为正项级数 .,机动 目录 上页 下页 返回 结束,定理2 (比较审敛法),设,且存在,对一切,有,(1) 若“大”级数,则“小”级数,(2) 若“小”级数,则“大”级数,则有,收敛 ,也收敛 ;,发散 ,也发散 .,是两个正项级数,(常数 k 0 ),机动 目录 上页 下页 返回 结束,例1. 讨论 p 级数,(常数 p 0),的敛散性.,解: 1) 若,因为对一切,而调和级数,由比较审敛法可知 p

5、级数,发散 .,发散 ,机动 目录 上页 下页 返回 结束,2) 若,p 级数收敛 .,证明级数,发散 .,证: 因为,而级数,发散,根据比较审敛法可知,所给级数发散 .,例2.,机动 目录 上页 下页 返回 结束,定理3. (比较审敛法的极限形式),则有,两个级数同时收敛或发散 ;,(2) 当 l = 0,(3) 当 l =,设两正项级数,满足,(1) 当 0 l 时,机动 目录 上页 下页 返回 结束,的敛散性.,例3. 判别级数,的敛散性 .,解:,根据比较审敛法的极限形式知,例4. 判别级数,解:,根据比较审敛法的极限形式知,机动 目录 上页 下页 返回 结束,思考与练习,用比较判别法

6、判定下列级数的敛散性,(1),(2),(3),定理4 . 比值审敛法 ( Dalembert 判别法),设,为正项级数, 且,则,(1) 当,(2) 当,时, 级数收敛 ;,或,时, 级数发散 .,机动 目录 上页 下页 返回 结束,说明: 当,时,级数可能收敛也可能发散.,例如, p 级数,但,级数收敛 ;,级数发散 .,例5. 讨论级数,的敛散性 .,解:,根据定理4可知:,级数收敛 ;,级数发散 ;,机动 目录 上页 下页 返回 结束,思考与练习,用比值判别法判定下列级数的敛散性,(1),(2),(3),定理5. 根值审敛法 ( Cauchy判别法),设,为正项级,则,数, 且,机动 目

7、录 上页 下页 返回 结束,时 , 级数可能收敛也可能发散 .,例6. 用根值法判定下列级数的敛散性,(1),(2),例7. 证明级数,收敛于S ,似代替和 S 时所产生的误差 .,解:,由定理5可知该级数收敛 .,令,则所求误差为,并估计以部分和 Sn 近,机动 目录 上页 下页 返回 结束,四 、交错级数及其审敛法,则各项符号正负相间的级数,称为交错级数 .,定理6 . ( Leibnitz 判别法 ),若交错级数满足条件:,则级数,收敛 , 且其和,其余项满足,机动 目录 上页 下页 返回 结束,收敛,收敛,用Leibnitz 判别法判别下列级数的敛散性:,上述级数各项取绝对值后所成的级

8、数是否收敛 ?,发散,收敛,机动 目录 上页 下页 返回 结束,五、绝对收敛与条件收敛,定义: 对任意项级数,若,若原级数收敛, 但取绝对值以后的级数发散, 则称原级,收敛 ,数,为条件收敛 .,例如 :,绝对收敛 ;,则称原级,数,条件收敛 .,机动 目录 上页 下页 返回 结束,定理7. 绝对收敛的级数一定收敛 .,例8. 判定下列级数是否收敛?如果收敛,是绝对收敛还是条件收敛?,(1),(2),(3),条件收敛 .,绝对收敛 ;,发散,例9. 证明下列级数绝对收敛 :,证: (1),而,收敛 ,收敛,因此,绝对收敛 .,机动 目录 上页 下页 返回 结束,(2) 令,因此,收敛,绝对收敛

9、.,机动 目录 上页 下页 返回 结束,内容小结,1. 利用部分和数列的极限判别级数的敛散性,2. 利用正项级数审敛法,必要条件,发 散,满足,比值审敛法,根值审敛法,收 敛,发 散,不定,比较审敛法,用它法判别,积分判别法,部分和极限,机动 目录 上页 下页 返回 结束,3. 任意项级数审敛法,为收敛级数,Leibniz判别法:,则交错级数,收敛,概念:,绝对收敛,条件收敛,机动 目录 上页 下页 返回 结束,思考与练习,设正项级数,收敛,能否推出,收敛 ?,提示:,由比较判敛法可知,收敛 .,注意:,反之不成立.,例如,收敛 ,发散 .,机动 目录 上页 下页 返回 结束,六、 函数项级数的概念,设,为定义在区间 I 上的函数项级数 .,对,若常数项级数,敛点,所有收敛点的全体称为其收敛域 ;,若常数项级数,为定义在区间 I 上的函数, 称,收敛,发散 ,所有,为其收,为其发散点,发散点的全体称为其发散域 .,机动 目录 上页 下页 返回 结束,为级数的和函数 , 并写成,若用,令余项,则在收敛域上有,表示函数项级数前 n 项的和, 即,在收敛域上, 函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论