附录.doc

200米液压钻机变速箱的设计(含CAD图纸)

收藏

压缩包内文档预览:(预览前20页/共23页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:115557555    类型:共享资源    大小:5.60MB    格式:ZIP    上传时间:2021-02-26 上传人:机****料 IP属地:河南
50
积分
关 键 词:
200 液压 钻机 变速箱 设计 CAD 图纸
资源描述:

喜欢这个资料需要的话就充值下载吧。。。资源目录里展示的全都有预览可以查看的噢,,下载就有,,请放心下载,原稿可自行编辑修改=【QQ:11970985 可咨询交流】====================喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=【QQ:197216396 可咨询交流】====================

内容简介:
附录1 利用三坐标测量仪确定聚苯乙烯材料表面形态D艾奇逊 R苏莱曼新西兰克赖斯特彻奇坎特伯雷大学机械工程学院【摘要】由于泡沫材料的用途广泛,全世界材料市场对它的需求量迅速上升。泡沫材料被广泛应用与汽车工业、食品包装工业、医疗卫生、运动器械、家庭用具、海岸浮标及救生圈,和小型船只等。因为泡沫材料的使用大大关系到人们的日常生活,所以有必要通过改变切割和加工的速度使它形成各种不同的形状。这种利用计算机辅助切割机床或全自动切割机才能达到。但是,切割的速度将会影响到材料加工后的表面粗糙度。所以,为达到优质的表面加工质量,有必要确定聚苯乙烯的表面形态。当前,人们正在研究制造一台用于这种泡沫材料的快速原型制造设备,研究的第一阶段就是在不同种类的金属切割丝在不同的温度下用不同的进给量切削后利用坐标测量仪确定聚苯乙烯表面形态。【关键字】 聚苯乙烯 表面形态 热切割丝1 简介当今世界材料市场对泡沫材料的需求量正迅速上升。泡沫材料可分成两大类,即柔性泡沫和刚性泡沫。柔性泡沫材料主要用于家具,运输工具、床垫、地毯、包装、玩具、运动器材和鞋子等,同时也被用于实现共振和吸音。刚性泡沫材料经常被用于建筑行业、绝缘隔离装置、管道、罐子、浮漂和装食物和饮料的容器等。泡沫材料被如此广泛地应用,总的来说可以概括为以下几点原因: 泡沫材料经济实用; 泡沫材料适合于室内和户外使用; 泡沫材料能被涂上一层各种不同的材料以达到任何设计的光洁度; 泡沫材料质量轻,运输安装方便。泡沫材料的是生产可以用各种不同的技术方法得以实现。生产连续泡沫板材的最常用方法是通过注入包括二甲苯异氰酸盐、聚醚多元醇等石油化工药剂和水的混合原料,这些原料可以被用来进行再生和再加工。不同的添加剂混合在一起以达到专门的特性。如颜色、活化吸收功能、作用于紫外线及其它一些特性。这种方法生产的泡沫此时仍然处于原始状态,接下的工作就是要把这些混合物加工成不同的形状和尺寸的材料。通常有切削的方法就能达到。切削泡沫材料有两种主要的方法,即发热切割丝切割和振动式切片法。两者分别适合于生产不同特性的泡沫材料。振动式切片法主要用于生产具有简单几何形状的刚性泡沫,而发热切割丝切割法适用于加工复杂几何形体的柔性泡沫材料。当前,着两种加工技术只作为人工的或半自动生产生产方式。2. 三坐标测量仪(CMM)在做进一步讨论之前,有必要对作为一种工具被用于确定聚苯乙烯表面形态这项研究的坐标测量仪进行一些说明。一台三坐标测量仪(以下简写为CMM)具有一个测量工件上各点的探针。这就像用手指去丈量地图上的坐标,探针就相当于手指,在工件表面触碰或触摸一定的区域。工件上的每一个点对于仪器的坐标系都是对立的,而这个坐标系描述了测量仪的运动情况。通常有两种类型的坐标系,第一个叫做机器坐标系,它的X,Y,Z轴分别表示CMM探针的移动方向,第二个叫做工件坐标系,它上面的三轴对应于工件的基准。一个基准确定工件上的一个特定部位的位置。这个部位可以是一个孔,一个面或是一个槽。CMM通过测量一个工件坐标来确定两个特定部位的距离。它也能被用来确定质地较软的物体的表面形态或表面粗糙度,比如聚苯乙烯。以下实验中使用的CMM是Discovery系列坐标测量仪Model D-12(如图1a)。机器利用一个固体探针或电子探测头触摸被测试件的表面来收集数据。这个实验使用了电子探测头。由于该探测头在工作时头部的微小侧滑将会影响到数据的正确读取,所以它工作时必须与被测工件表面保持垂直正交以获得最准确的数据信息。在笔者的实验室里可使用的探测头头部接触信号传输元件直径有1.0、2.0、3.0、4.0和5.0mm五种。由于聚苯乙烯比较软,更小尺寸的接触信号传输元件在触摸工件表面时可能会导致新的斜面或坑洞的产生,因此在这个实验中使用了一个直径为3.0mm的红宝石传输元件。(如图b1)。较大尺寸的元件相对就会减少导致聚苯乙烯表面产生斜面或坑洞的可能性。所以用直径用3.0mm的传输元件可以避免上述现象的发生而减少数据读取误差。(如图c1 和d)3.表面形态表面形态或者表面粗糙度包括表面刮擦痕迹和碎片痕迹,这种认识被普遍接受。这些痕迹彼此分开但相对紧密地排列,这使得他们很难被测量到。究竟为什么工程师们要不怕麻烦地去测量表面粗糙度呢?主要原因是被测的表面经常与其它表面相关。通过了解工件表面的形态,接触位置的状态和相接触的各种部件的表现都被控制了。 (d)图1 (a)本次实验使用的CMM;(b)在显微镜下观测到的聚苯乙烯表(c)典型探针直径;(d)本次实验中用的探针区分表面形态和表面粗糙度的不同是很有必要的。表面形态是柔性材料表面的几何属性,如聚苯乙烯或海绵。要测量柔性材料表面粗糙度是一项非常困难和具有挑战性的工作,但最终也能做到。3。表面粗糙度更多地被认为是一种无规则或者凹凸不平的表面状态,通常是在坚硬的材料表面进行测量4。这样定义它们有利于开发和鉴定测量工件硬度的技术和等级。假如表面粗糙度需要遵循一个书面的标准,那很少有这样的书面标准可以参考。最常用的就是1961年英国标准学会BS1134出版的Centre-line A verage Height Method for Assessment of Surface Texture。当前机械工业中常用的另一个标准就是1984年颁布的国际标准体系第一版第1215页中的Surface Roughness-Terminology-Part 1-surface and Its Parameters。测量标准基于扫描一机械实体表面后得到的外形轮廓。要得到一个经仔细评价的粗糙度标准,就要涉及到ISO组织出版的国家标准。后者可以与国家参考实验室联系查阅到。这些实验室有英联邦国家物理实验室,德国Physikalishe Technishe Bundesabstalt,美国国家标准与技术研究所和法国dEssais国家实验室。4.柔性材料表面形态涉及到测量柔性材料诸如聚苯乙烯及其它泡沫材料的表面粗糙度时往往问题就会产生。有一种恰当的测量方法就是运用光学技术,然而由于运用光学技术只仔细关注局部位置,如试样表面那些比较陡的斜坡,就像动力学只关注结构一样,会使反馈失真。其它一些光学技术遇到的问题是当扫描到较陡的斜破时没有足够的光反射回探测系统。这就是此项研究要使用CMM的原因。CMM之所以能测量聚苯乙烯表面形态是因为聚苯乙烯表面有陡的斜坡。用显微镜观测后发现这些陡坡的形状非常有规律。测试的结果如图2所示。我们可以注意到,坡越陡CMM读取数据后绘制的线越长。5.实验技术在这项研究中,设计了一台用线切割技术切割聚苯乙烯的简单机器。这台机器在一维空间上切割聚苯乙烯材料,即水平方向向工件输送热切割丝。用热丝切割泡沫材料尤其是聚苯乙烯的方法很常用。热切割丝的两端与一个电源相连,当切割丝两端的温度不一致时热量就会沿着切割丝传递。热量按照一定的温度梯度沿切割丝从温度高的部位传递到温度低的部位,这样来实现热的传导。热切割丝的一头与一个热电偶相连,用来读取切割丝的温度。我们通过控制热切割丝两端的电压和流过切割丝上的电流就能够控制切割丝的温度了。是实验中用到的温度为100、200和300。这个实验的目的就是要通过用CMM测量用不同材料的切割丝,不同的温度和不同的切割丝给进速度来呈现聚苯乙烯的各种表面形态。它的表面形态的变化取决于热线切割机的切割丝材料、温度和切割丝的给进速度。被测试的材料工件是长度为300mm,宽300mm,厚50mm的聚苯乙烯。之所以选择这样的尺寸是因为在进行检测时方便抓握。用于切割的切割线有镍铬合金切割丝、Inconel和镍铬铁弹簧丝5。选择使用Inconel和镍铬铁弹簧丝是由于它们在被用于高温切割后有保持形状的能力67。而选择镍铬合金切割丝是因为它是切割聚苯乙烯时最常用的切割丝。聚苯乙烯在不同的温度下,不同的切割丝给进速度和不同类型的切割丝被切割。切割时的给进速度范围从100到500mm/min。在每次切割后,聚苯乙烯工件的表面就用CMM测量上面的20个测点。在这个实验开始之前,我们测试了大量的测量用接触点。用CMM进行10到200次测量试验以调整测量用的测点。调整测点的测试次数越多,本次测量时间就越长。试验结果表明,测试次数为20和200次的情况非常相似,所以在本次测量中选择了20个测点。6.结果实验中聚苯乙烯的表面形态用CMM直接计算和记录下来。用不同的切割线,温度和切割给进速度,聚苯乙烯材料被切割成厚度为10mm的小块,然后,CMM就分别在这些小块表面检测20个点。图3显示了用镍铬合金切割丝在100,给进速度为100mm/min进行切割,材料形成的表面形态数值为0.551个单位。最好的表面形态值应该接近0。图3同时显示出用镍铬合金切割丝切割聚苯乙烯材料时最适合的切割温度为200,最适合的给进速度为200mm/min。当给进速度大于200mm/min时,切割丝容易滑动和弯曲,这会影响到切割的质量,进而影响到聚苯乙烯的表面形态。图4比较了三种材料切割丝在100时切割表现。图2 用CMM测量结果输出样本最好的表面形态质量是用英科耐尔合金材料(Inconel)切割丝在100和200mm/min给进速度是形成的。这时的表面形态值仅为0.14个单位。我们注意到,英科耐尔合金材料(Inconel)切割丝在给进速度为500mm/min时仍然可以进行工作,但这时形成的工件表面形态质量是很差的。图3 直径为1.0mm的镍铬合金切割丝在不同给进速度下切割后的表面形态比较图4在100下不同给进速度切割后的表面形态比较图5显示了三种切割丝在200时的切割表现。在这个温度下,英科耐尔合金材(Inconel)切割丝和镍铬铁弹簧丝在给进速度为500mm/min时也仍然可以继续工作。最好的表面形态质量是Inconel在给进速度为300mm/min时形成的。但是,只有镍铬铁弹簧丝在各种不同给进速度下进行切割时所形成的表面形态值保持在1.0个单位以下。图5在200下不同给进速度切割后的表面形态比较7.讨论前面已经提到,之所以选择英科耐尔合金材(Inconel)和镍铬铁弹簧丝是由于它们在100、200和300温度下进行切割作业后仍能保持原来的形状。选择镍铬合金切割丝是因为它是切割聚苯乙烯材料最常用的切割丝。保持切割丝的形状不变是一个非常重要的性能指标,因为切割丝的弯曲变形直接影响到切割聚苯乙烯后形成的表面形态质量。图6比较了实验中用到的三种切割丝对应的弹性率。假设检测前切割丝被做成环状,就像一个弹簧,弹性率的计算公式如下:其中 R弹性率 G剪切模数 d切割丝直径 n线圈数 D线圈直径平均值它的单位是力每偏差单位(或力每毫米)。弹性率实际上分散了偏差所要求产生的力8。下面这个图表比较了三种材料切割丝的弹性率。我们从图中不难看出,弹性率越高,恢复形状的能力越大。图6表明,选择镍铬合金切割丝弹性率最大,因此这种切割丝能够保持自己原来的形状。图6 直径为1毫米切割丝在不同线圈直径下的弹性率比较然而,基于这些实验,切割工件后产生的最好表面形态的是用英科耐尔合金材料(Inconel)切割丝在200下用300mm/min的给进速度切割时形成的。英科耐尔合金材料(Inconel)切割丝能够在500mm/min的给进速度切割工件,但产生的工件表面形态质量很糟糕。一个更加连续的表面形态可以有镍铬铁弹簧丝切切割后形成。用镍铬铁弹簧丝在200下用200mm/min的给进速度进行切割所形成的表面形态质量最好。镍铬铁弹簧丝也能在接近500mm/min给进速度下工作,而且可以得到一个有趣的结果,就是用镍铬铁弹簧丝切割工件时,在所有不同的给进速度下产生的表面形态值都在1.0个单位以下。用不同给进速度进行切割能够形成连续的表面是它的一个优点,因为这样就提供了一个安全切割环境,同时能够避免产生切割错误的发生。所有以上材料的切割丝均能在300的温度下工作并表现出良好的切割性能。8.结论像聚苯乙烯这样的柔性材料的表面形态能够用CMM在设置20个检测点的条件下确定。最好的连续表面形态能够用镍铬铁弹簧丝切割工件达到,其次是英科耐尔合金材料(Inconel)切割丝。最适合的切割条件是在200温度下,用200mm/min的给进速度。如之前提到的,没有现行的研究来制造用于切割泡沫材料工件的快速成型机。这项研究的第一步就是在不同的温度和给进速度条件下,被不同材料的切割丝切割后再通过CMM确定聚苯乙烯的表面形态。根据实验第一步的结果,切割聚苯乙烯快速成型机应该用镍铬铁弹簧丝作为刀具。附录2Determining the surface form of polystyrene throughthe coordinate measurement machineD Aitchison and R Sulaiman*Department of Mechanical Engineering, University of Canterbury, Christchurch, New ZealandAbstract: The market for foam materials has been growing rapidly throughout the world as they have a variety of uses. Some examples are in the automotives industries, food packaging industries, medical application, sports gears, home insulations and floatation in offshore drilling rigs, buoys and small boats. Since the uses of foam affects greatly the daily lives of humans, the need to have foams in different shapes requires speed in cutting and manufacture. This can only be done through computer aided cutting machines or automated cutting of foams. However, the speed of cutting will affect the surface . finish of the cut. Therefore, it is necessary to determine the surface form of the polystyrene to achieve quality results. This is an on-going research to produce a rapid-prototyping machine that cuts foam models. The . first phase of this research is to determine the surface form of polystyrene through the use of a coordinate measuring machine (CMM), after being cut with different types of wires, at different temperatures and cutting feed-rates.Keywords: polystyrene, surface form, hot-wire cutting1 INTRODUCTIONThe market for foam material has been growing rapidly throughout the world. Foams can be categorized intotwo major types, namely flexible foams and rigid foams. The flexible foams are mainly used in furniture, transportation, bedding, carpet underlay, packaging, toys, sports application and shoes, as well as for vibration and sound attenuation. The rigid foams are usually used in building appliances, insulation agents, pipes, tanks, floatation and food and drink containers1. The reason why foams are used everywhere can be summarized as follows:1. Foam is very inexpensive.2. Foam is suitable for use indoors or outdoors.3. Foam can be coated with many different products to achieve any desired . finish.4. Foam is lightweight for easy handling and installation.The production of foams can take place using many different techniques. The most common method to produce continuous foam slab is by pouring mixed ingredients of petrochemical agents that include toluene di-isocyanate, polyol and water. These ingredients are left to rise and cure. Additives are blended in for specific. characteristics such as colors, absorbing capacity, effects on ultra violet and others. This method produces foam in its raw state, which must then be formed into different shapes and sizes. This is usually done by cutting the foams. There are two ways to cut foam materials, which are by using hot-wire techniques and the oscillating blade method. Both produce different features to the foams. The oscillating blade produces simple geometrical shapes and is suitable for rigid foams. The hot-wire technique is capable of producing complicated geometrical shapes and is suitable for flexible foams. Presently, both techniques are performed either manually or in a semi-automated manner 2.2 COORDINATE MEASUREMENT MACHINE (CMM)Before further discussion, it is necessary to describe the features of a coordinate measurement machine (CMM) as a tool used in this research for determining the surface form of polystyrene. A CMM consists of a probe to measure points on a work-piece. This is similar to using a . finger to trace a map coordinate. The probe acts as a . finger that points or touches a certain location on the work-piece. Each point on the work-piece is unique to the machines coordinate system. The coordinate system describes the movement of the measurement machine.There are two types of coordinate system. The . first is called the machine coordinate system. Here, the X, Y and Z axes refer to the machine s motion. The second coordinate system is called the part coordinate system, where the three axes relate to the datum of the work-piece. A datum is a location of a feature on a work-piece. It can be a hole, a surface or a slot. A CMM measures a work-piece to determine the distance from one feature to another. It can also be used to determine the form or roughness on a surface of a soft object, such as polystyrene. The CMM used in the present experiment is the Discovery Series coordinate measuring machine Model D-12 (Fig. 1a).Data are gathered by touching the test piece with either a solid probe or an electronic touch trigger probe. This experiment uses the electronic touch trigger probe. The probe measurement was taken perpendicular to the test piece to obtain the optimal result because probe tip skidding will affect the reading of data. The stylus sizes that are available in the authors laboratory are 1.0, 2.0, 3.0, 4.0 and 5.0mm in diameter. The stylus used in this experiment was ruby with a size of 3.0mm in diameter. As polystyrene is soft, a smaller stylus size may create new slopes or holes when touching the polystyrene (Fig. 1b). A larger stylus size may not detect the existing slopes and holes on the surface of the polystyrene. Therefore, the stylus 3.0mm in diameter was used to avoid the above reading errors (Figs 1c and d).3 SURFACE FORMIt is generally agreed that surface form or roughness consists of scratch marks and fragmentation marks within them. These marks are relatively closely spaced together. This makes them dif. cult to measure. Why do engineers trouble to measure surface roughness at all? The main reason is that the surface being measured will be in contact with some other surfaces. By understanding its surface, the nature of the contact and the performance of the contacted components can be controlled. (d)Fig. 1 (a) The CMM used in this experiment; (b) the surface of polystyrene as seen through a microscope; (c) typical diagram of the probe; (d) the probe used in this experimentIt is necessary to state that surface form and surface roughness are not the same. Surface form is a geometrical pro. le of a surface on soft materials, such as polystyrene or sponge. Measuring surface roughness on soft material is challenging and complicated, but can be done 3. Surface roughness is more commonly recognized as an irregular or uneven surface, usually on hard materials 4. The definitions tend to refer to the technique or scale of measuring its hardness. If surface roughness needs to comply with a written standard, there are a few to choose from. The most common is the British Standards Institution BS 1134, Centre-line Average Height Method for Assessment of Surface Texture, 1961. There is also another one being used in the mechanical engineering industry to date, which is the International Standard ISO 4287, Surface RoughnessTerminologyPart 1Surface and Its Parameters, 1st edition, 1984, pp. 1215. The measurement standards are based on a line pro. le obtained by scanning a mechanical stylus across the surface. For a thorough assessment of the roughness standards, refer to ISO 4287 and the published national standards based on this ISO documents. The latter can be traced by contacting national reference laboratories, e.g.National Physical Laboratory in the United Kingdom, Physikalishe Technishe Bundesanstalt in Germany, National Institute of Standards and Technology in the United States and Laboratoire National dEssais in France.4 SURFACE FORM FOR SOFT MATERIALSQuestions are often raised concerning the possibility of measuring surface roughness of soft materials such as polystyrene or other foam materials. A suitable method of measuring is by using the optical technique. However, with the optical technique careful attention must be focused on local, steep slopes in the surface of the test piece, as the dynamic focusing instruments tend to produce corrupt feedback at these points. Other optical techniques encounter problems with steep local slopes by not reflecting enough light back into the detector system. This is the main reason why this research uses the CMM machine. The CMM machine can measure the surface form of polystyrene because polystyrene usually does not have steep slopes. When examined through a microscope, these slopes appear to be sperical in shape. Results of the tests are produced as shown in Fig. 2.Notice that the deeper the slope, the longer the line produced by CMM readings.5 EXPERIMENTAL TECHNIQUEIn this research, a simple machine is designed to cut polystyrene using the hot-wire technique. The machine will cut the polystyrene in a one-dimensional movement, i.e. feeding the hot wire horizontally towards the polystyrene. Hot-wire foam cutters are very common when working with polystyrene. The two ends of the hot wire are connected to a power source. Heat will flow when there is a difference in temperature across the wire. Heat flows from warm to cold areas at a rate proportional to the temperature gradient and the thermal conductivity of the wire it is owing through. A thermocouple is connected to the hot wire to give a reading of the wire temperature. Manipulating the current and voltage of the wire can control the temperature. The temperatures considered in this experiment are 100, 200 and 300 8CThe objective of this experiment is to reveal the surface form of polystyrene through the use of a CMM with different types of wires, temperatures and cutting feed-rates. The surface form is affected by the federate and temperature of the hot-wire cutter. The test material was polystyrene with width of 300mm, length of 300mm and thickness of 50mm. These sizes were selected because they can be easilyhandled when performing the test. The wires used as the cutting tool were nickelchromium alloy (Nichrome), Inconel and nickelchromiumiron (NiCr-C) spring wire 5. The reasons for selecting Inconel and NiCr-C spring wires are due to their ability to maintain their shape after being applied to the operating cutting temperatures 6, 7. Nichrome wire was chosen as it is the most commonly used wire for cutting polystyrene materials.The polystyrene was cut using different types of wires at different temperatures and feed-rates. The feed-rate ranged from 100 to 500mm/min. After each cut, the surface of the polystyrene was measured using the CMM with 20 touch points. A test was done prior to this experiment on the number of touch points. Touch points from 10 to 200 touches were investigated using the CMM. The higher the number of touches, the longer the time required in order to perform the test. Results show that the surface form from 20 and 200 touches were very similar. Therefore, in this experiment 20 touch points were chosen.6 RESULTSThe surface form of the polystyrene was calculated and recorded directly from the CMM. Using different types of wires, temperatures and cutting feed-rates, the polystyrenes were cut into small pieces of 10mm thickness. Then, the CMM ran the 20 touch pointsD AITCHISON AND R SULAIMA842 Ntest on the cut pieces of polystyrene. Figure 3 shows that a Nichrome wire at a temperature of 100 and a feed-rate of 100mm/min produces a surface form of 0.551 units. The best surface form should be the one nearest to 0.Figure 3 also shows that the most suitable cutting temperature and feed-rate for Nichrome wire were 200 and 200mm/min respectively. Cutting can only be done up to a feed-rate of 300mm/min. At a feed-rate higher than this, the wire tends to slip and bend. This affectsFig. 3 Surface form against feed-rate for Nichrome wire of 1.0mm diameterFig. 4 Surface form against feed-rate at a temperature of 100the cutting quality and, hence, the surface form of the polystyrene. Figure 4 illustrates the comparison of all three types of wire used in this experiment at a cutting temperature of 100 8C. The best surface form was made by Inconel wire at a temperature of 100 8C and a feed-rate of 200mm/min. The surface form was 0.14 units. Notice also that Inconel was able to perform the cutting at feed-rates up to 500mm/min. However, at this cutting speed the surface form was poor. Figure 5 shows the cutting performance of all three wires at a temperature of 200 8C. At this temperature, two wires were able to cut up to a feed-rate of 500mm/min, namely Inconel and NiCr-C spring wires. The best surface form was made from Inconel at a feed-rate of 300mm/min. However, NiCr-C produces a consistent surface form of below 1.0 unit at different feed-rates.7 DISCUSSIONAs mentioned earlier, the reason for selecting Inconel and NiCr-C spring wires was due to their ability to maintain their shape after being applied at temperatures of 100, 200 and 300 8C. Nichrome wire was chosen as it is the most commonly used wire for cutting polystyrene materials. Maintaining their shape was a main concern because a bent wire will affect the quality of the cut polystyrene. Figure 6 shows the comparison of the three types of wire selected in this experiment against their spring rate. Assuming that the wires are shaped into a loop, similar to a spring, the spring rate was calculated as Gd4R= 8nd3whereR =spring rateG = shear modulusd =wire diametern =number of coilsD =mean coil diameterIts unit is force per unit of deflection (or force per millimetre). The spring rate actually divides the force by the deflection required to produce that force 8. A graph comparing the spring rates of the three wires was plotted. The lower the spring rate, the more recoverable the shape will be. Figure 5 shows that the lowest spring rate was made by the NiCr-C wire. Thus, this wire is able to maintain its shape.Fig. 5 Surface form against feed-rate at a temperature of 200Fig. 6 Comparing the spring rate R and the loop diameter for wires of 1mm diameterHowever, based on the experiments, the best surface form was made using Inconel wire at a cutting temperature of 200 8C and a cutting feed-rate of 300mm/min. Inconel was able to perform cutting at a feed-rate up to 500mm/min but the surface form was very poor. A more consistent surface form was produced by NiCr-C spring wire. The best surface form made from NiCr-C was at a cutting temperature of 200 8C and a feed-ate of 200mm/min. NiCr-C was also able to cut at a feed-rate up to 500mm/min. An interesting outc
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:200米液压钻机变速箱的设计(含CAD图纸)
链接地址:https://www.renrendoc.com/paper/115557555.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!