版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.2.2 用样本的数字特征估计总体的数字特征,1频率分布直方图 在频率分布直方图中,纵轴表示,数据落在各小组内的频 率用表示,所有长方形面积之和. 提示:注意频率分布条形图和频率分布直方图是两个不同的概念虽然它们的 横轴表示的内容是相同的,但是频率分布条形图的纵轴(矩形的高)表示频率;频 率分布直方图的纵轴(矩形的高)表示频率与组距的比值,其相应组距上的频率等 于该组距上的矩形的面积,频率与组距的比值,小长方形的面积,等于1,2频率分布折线图和总体密度曲线 (1)频率分布折线图:连接频率分布直方图中各小长方形上端的 , 就得频率分布折线图 (2)总体密度曲线:随着样本容量的增加,作图时所有的
2、组数增加, 减 小,相应的频率分布折线图会越来越接近于一条光滑曲线,即总体密度曲线,中点,组距,3茎叶图 当样本数据较少时,茎叶图表示数据的效果较好,一是从统计图上没有 丢失,二是方便记录与表示,但当样本数据较多或数据位数较多时,茎叶图就不太方便了,原始,数据,4众数、中位数、平均数 (1)在一组数据中,出现次数 的数据叫做这组数据的众数 (2)将一组数据按大小依次排列,把处在 位置的一个数据(或中间两个数据的平 均数)叫做这组数据的中位数 (3)如果有n个数x1,x2,xn,那么 叫做这n个数的平均数,较多,中间,5标准差和方差 (1)标准差是样本数据到平均数的一种 (2)s . (3)方差
3、: (xn是样本数据,n是样本容量, 是样本平均数,平均距离,思考】 总体平均数与总体方差分别反映了总体的什么特征,有哪些区别? 答案:总体平均数即总体期望值,是反映总体平均水平的一个值;而总体方差是反映总体的波动情况的一个量,二者反映的角度不同,不可相互比较,但有些问题在总体期望值差距不大时,可考虑用总体方差进一步区分,1(2009福建卷)一个容量为100的样本,其数据的分组与各组的频数如下: 则样本数据落在(10,40上的频率为() A0.13 B0.39 C0.52 D0.64 解析:由列表可知样本数据落在(10,40上的频数为52,故其频率为0.52. 答案:C,2.右图是根据山东统计
4、年鉴2007中的资料作成的1997年至2006年我省 城镇居民百户家庭人口数的茎叶图图中左边的数字从左到右分别表示 城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇 居民百户家庭人口数的个位数字从图中可以得到1997年至2006年我省 城镇居民百户家庭人口数的平均数为() A304.6 B303.6 C302.6 D301.6 解析: 303.6. 答案:B,3从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差 为() A. B. C3 D. 解析:由标准差公式计算可得 答案:B,4(2009湖北卷)如图是样本容量为200的频率 分布直方图 根据样本的频率
5、分布直方图估计, 样本数据落在6,10)内的频数为_, 数据落在2,10)内的概率约为_ 解析:2000.08464;(0.020.08)40.4. 答案:640.4,5: 甲、乙两台机床同时加工直径为10 mm的零件,为了检验产品的 质量,从产品中各随机抽取6件进行测量,测得数据如下 (单位mm) 甲:99,100,98,100,100,103 乙:99,100,102,99,100,100 (1)分别计算上述两组数据的平均数和方差; (2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求,思维点拨:已知一组数据x1,x2,xn,其平均数为 ,方差为 标准差为 解:(1) (99
6、100)2(100100)2(98100)2(100100)2(100100)2(103100)2,99100)2(100100)2(102100)2(99100)2(100100)2(100100)21. (2)因为,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求,1平均数与方差都是重要的数字特征,是对总体的一种简 明的描述,它们所反映的情况有着重要的实际意义, 平均数、中位数、众数描述其集中趋势,方差和标准 差描述波动大小,附注,2平均数、方差的公式推广 (1)若数据x1,x2,xn的平均数为 ,那么mx1a, mx2a,mx3a,mxna的平均数是m a. (2)数据x1,x
7、2,xn的方差为s2. s2 数据x1a,x2a,xna的方差也为s2; 数据ax1,ax2,axn的方差为a2s2,二 、 众数、中位数、平均数与频率分布直方图的关系,1、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。 例如,在上一节调查的100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t.如图所示,0.1,0.2,0.3,0.4,0.5,O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t,2、在样本中,有50的个体小于或等于中位数,也有50的个体大于或等于中位数,因此,在频率分布直方图中,中位数左
8、边和右边的直方图的面积应该相等,由此可以估计中位数的值。下图中虚线代表居民月均用水量的中位数的估计值,此数据值为2.02t,0.1,0.2,0.3,0.4,0.5,O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t,说明: 2.02这个中位数的估计值,与样本的中位数值2.0不一样,这是因为样本数据的频率分布直方图,只是直观地表明分布的形状,但是从直方图本身得不出原始的数据内容,所以由频率分布直方图得到的中位数估计值往往与样本的实际中位数值不一致,3、平均数是频率分布直方图的“重心”. 是直方图的平衡点. n 个样本数据的平均数由公式,X,值为:在频率分布直方图中每个小
9、矩形度面积乘以小矩形的底边中点的横坐标之和,0.1,0.2,0.3,0.4,0.5,O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t,三 三种数字特征的优缺点,1、众数体现了样本数据的最大集中点,但它对其它数据信息的忽视使得无法客观地反映总体特征.如上例中众数是2.25t,它告诉我们,月均用水量为2.25t的居民数比月均用水量为其它数值的居民数多,但它并没有告诉我们多多少,2、中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点。如上例中假设有某一用户月均用水量为10t,那么它所占频率为0.01,几
10、乎不影响中位数,但显然这一极端值是不能忽视的,3、由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数都不具有的性质。也正因如此 ,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计时可靠性降低,在频率分布直方图中,中位数、众数与平均数如何确定,提示:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值,而平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.众数是最高的矩形的中点的横坐标,1(2009年上海高考)在发生某公共
11、卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”,根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是() A甲地:总体均值为3,中位数为4 B乙地:总体均值为1,总体方差大于0 C丙地:中位数为2,众数为3 D丁地:总体均值为2,总体方差为3,解析】由于甲地总体均值为3,中位数为4,即中间两个数(第5、6天)人数的平均数为4,因此后面的人数可以大于7,故甲地不符合乙地中总体均值为1,因此这10天的感染人数总和为10,又由于方差大于0,故这10天中不可能每天都是1,可以有一天大于7,故乙地不符合丙地中中位数为
12、2,众数为3,3出现的最多,并且可以出现8,故丙地不符合故丁地符合 【答案】D,2: (2009安徽高考)某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验两种小麦各种植了25亩,所得亩产数据(单位:千克)如下: 品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454 品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406
13、,407,410,412,415,416,422,430,1)完成数据的茎叶图;(2)用茎叶图处理现有的数据,有什么优点? (3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论,解】(1,2)由于每个品种的数据都只有25个,样本不大,画茎叶图很方便;此时茎叶图不仅清晰明了地展示了数据的分布情况 ,便于比较,没有任何信息损失,而且还可以随时记录新的数据 (3)通过观察茎叶图可以看出:品种A的亩产平均数(或均值)比品种B高;品种A的亩产标准差(或方差)比品种B大,故品种A的亩产稳定性较差,3从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度 (单位:mm),结果如下: 甲品种
14、:271273280285285287292294295 301303303307308310314319323 325325328331334337352 乙品种:284292295304306307312313315 315316318318320322322324327 329331333336337343356,09海南宁夏,由以上数据设计了如下茎叶图: 根据茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论,解:可从以下几个结论中任意写出两个 乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度) 甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定)甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大) 甲品种棉花的纤维长度的中位数为307 mm,乙品种棉花的纤维长度的中位数为318 mm. 乙品种棉花的纤维
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年甘肃畜牧工程职业技术学院单招职业技能考试题库及答案1套
- 2026年淮南联合大学单招职业技能考试题库及答案1套
- 2026年内蒙古乌海市单招职业适应性测试题库新版
- 2026年浙江交通职业技术学院单招职业适应性考试题库附答案
- 2026年重庆市绵阳市单招职业倾向性测试题库必考题
- 2026年漳州科技职业学院单招职业适应性测试必刷测试卷附答案
- 2025停车场广告投放合同样本
- 2026年内蒙古体育职业学院单招综合素质考试题库新版
- 2026年牡丹江大学单招职业倾向性考试必刷测试卷新版
- 2026年阜新高等专科学校单招职业倾向性考试题库新版
- 中国阻燃玻璃纤维行业市场前景预测及投资价值评估分析报告
- 人工智能在医学护理领域的应用与实践
- 土建工程施工合同协议书
- 签约办证协议书模板
- 古琴商业计划书
- 房屋安全鉴定服务投标方案
- 2025年4月版安全法律法规标准文件清单
- 《晴隆县红寨煤业有限责任公司晴隆县中营镇红寨煤矿(变更)矿产资源绿色开发利用方案(三合一)》评审意见
- 食堂送餐合同
- 湖南省张家界市永定区2024-2025学年七年级上学期期末考试历史试题(含答案)
- 《新能源乘用车二手车鉴定评估技术规范 第1部分:纯电动》
评论
0/150
提交评论