版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实用文档二次根式教材分析、本章地位与作用本章内容属于“数与代数”的基础内容,既是“整式”、“分式”之后引入的第三类重要代数式,也是“实数”之后对“数”的认识的深化本章内容具有极强的“工具性”,教材中安排本章在“勾股定理”之后、“二次方程”之前,意在为解二次方程做好准备;本学期安排本章在“勾股定理”之前,能为解任意直角三角形的三边数值扫清障碍.、知识网络归纳文案大全三、课标及中考要求【课标要求】了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)力口、减、乘、除运算法则,会用它们进行有关的简单四则运算.(不要求进行根号下含字母的二次根式的四则运算,如a3b ,)【中考要求】考试要求A
2、B二次根式及其性质了解二次根式的概念,会确定二次根式有意义的条件能根据二次根式的性质对代数式作简单 变形;能在给定条件下,确定字母的值二次根式的化简和运算理解二次根式的加、减、乘、除运算法则会进行二次根式的化简,会进行二次根式的混合运算(不要求分母有理化)1参考了之前几次同题教材分析稿,例题也大多沿用之四、课时安排建议21 . 1 二次根式约2课时21 . 2二次根式的乘除约2课时21 . 3二次根式的加减约34课时数学活动与小结约2课时五、全章教学建议1. 注意本章内容的“工具性” 二次根式相关知识的学习是为后续勾股定理、二次方程的学习打基础, 因此应重点落实二次根式的性质、化简和计算( 特
3、别是实数的化简和计算)的准确性,提高学生的计算能 力尽管课本中的例题相对简单,但不要忽视它们在学生建立知识结构的过程所起的过渡作用.非实验班不建议在此补充涉及代数式化简、运算技巧的内容(如分母有理化等),相应地,学探诊测试6第6题及之后的题目可不作为基本教学要求.2. 从提出二次根式的概念开始,就注意强化“二次根式在一定条件下才有意义”这一观念避免教 材第7页小贴士“在本章中,如果没有特别说明,所有的字母都表示正数”给学生带来的误解和误导.总 有为数不少的学生将二次根式有意义的“非负性”条件误记为“正性”条件,可能与此有关.3. 注意对“实数”一章知识的复习,体现“数式通性”的原则;注意与“整
4、式”、“分式”相关知识 的联系,相关结论可以类比记忆.4. 注意教材和学探诊中,有些题目需要用到勾股定理,可先回避.六、各小节教学建议21 . 1 二次根式(1 )实例引入,注意复习开平方、算术平方根的概念和符号表示.(2 )二次根式的形式定义:建议不要把精力放在辨别一个式子是否为二次根式上,而应该侧重于理解被开方数是非负数(不要误记为正数)的要求.例如,2 是二次根式吗?按本人的理解,72作为单独一个数应属于单项式,非二次根式.学探诊92页第6题:下列各式中,一定是二次根式的是:(A . W ( B) (匚0.3)2 ( C) . -2 ( D . x , 答案B.本人认为题干应该改为“下列
5、各二次根式一定有意义的是”总之,真正该提醒学生的是“数式通性”:如果被开方数是一个常数,那么它不可以是负数;如果被开方数含字母,那么它有取值范围的限制(与分式类似)(3) 二次根式(根号)的双重非负性:a 0, (a 0);(4) 教材要求掌握的公式:(.a)2 =a (a _0) , aa (a _0),建议授课时提高要求,理解并掌握宵=a =丿a(a.-a(a 2 3 -2x ;1(2) y - . _x ; x+1(3)答案:(1)21y =|x| -2312 zx; (2) x 乞0 且 x=1; (3) x_ 且 x = 2 ;22(4) y = . x2 -2x 2 .(4)全体实
6、数.例2 :若x、y为实数,且y= .、x _2 +、2_x + 3.求yx的值.(yx=9)例3 :判断下列等式是否成立:(1)(=19(-19)2 =19).答案:(1 )V; (2)X;(3)(4)(5)X; (6 )V.例4 :已知a,b,c为三角形的三边,.(a b c)2. (b -c - a)2; (b c -a)2(a b c)21 . 2二次根式的乘除(1)从具体到抽象,归纳得出乘法公式:、a、b 二.ab(a _ 0,b _ 0)理解二次根式乘除运算法则的合理性:可与anbn =(ab)n做形式上的类比;可以利用算术平方根的定义进行推理证明:_0,、,b 一0 ,_ 2 2
7、 2,aba 、“b ab 且从公式的适用范围看,包括了某些字母取0的情况;为降低难度,如果遇到纯二次根式化简问题,可以默认为字母都表示正数;当涉及字母的取值范围问题时,不能认为字母都是正数.(2)公式的逆用: ab = a 、: b(a _ 0, b _0);.能利用这条性质对二次根式进行化简注意学生不易理解“开得尽方的因数或因式”的含义,教材在第8页小贴士的解释:可以开方后移到根号外的因数或因式在这里,不妨多举一些例子, 让学生明确在化简时,一般先将被开方数进行因数分解或因式分解,然后再将能开得尽方的因数或因式开出来.初步总结乘法运算的结果应满足以下两个要求: 结果是一个二次根式,或单项式
8、乘以二次根式;也可能没有根号,只是单项式;根号下不再 有“开得尽的因数或因式”.除法公式及逆用:0),: = 4心0)注意b 0的条件;an fa 可以通过归纳、或证明、或类比厂得出此公式;对于二次根式的除法运算和二次根式的化简,应让学生一题多解,一方面是熟悉二次根式性质、. 8: 8 , 2a4ja 2; a-2a 2a 2a 2a a运算法则和方法,另一方面,通过一题多解,总结做题经验,使运算更灵活、更简洁.3 _、35 _ .151555 .5 (,5)258 _ 2 2_ 2 _ 2-a 2-a:.?2a . 2 a -:/a Ja * :a a又如 “J2 A 2 ;如果学生觉得不易
9、灵活运用,也可总结为更易操作的“算法”:或者:a型,所有:的转化为a型即b.a型,所有的,.:转化为.行宁再化简用具体的实例归纳总结出把一个二次根式化为最简二次根式的方法技巧如:当被开方数较大时,可用分解因数的办法将被开方数尽可能写成完全平方数的乘积形式.至此学生应能对12,. 1, 12.5,等常见数值进行化简.总之,学生在化简运算的简洁性和准确性上都容易出现问题,因此建议在教学过程中先要求学生观察二次根式的特点,根据其特点分析运用哪条性质、哪种方法来解答,每步运算的根据的什么,培养学生的分析能力和观察能力,以及计算的目的性和条理性.(4 )最简二次根式的概念:不要求学生背出定义,关键是遇到
10、实际式子能够加以判断,让学生在练习中熟 悉这个概念,同时明确二次根式的运算结果应化为最简二次根式.例5 :计算:例6 :化简:(5).28 ;(9)、16ab例7 :计算:(1)23c ;(1) 、3.-.5 ;( 2)1、27 ;(1),8 ;( 2);(3)(6) . 32 ;(7).48 ;(5)(6) 3(10)计算:(1) 2、2,312 ;(3) 、14 2、.7 ;.18 ;(8)(4)2450 ;(2)3(3)(4)25 y9x2 ;(7)匹;(27(9)3个有效数字).已知 J2 2.414,求 7200, J0.0002,J0.72 的近似值(保留21 . 3二次根式的加减
11、(1)教材采用了“被开方数相同的最简二次根式”的说法;为简洁明了,建议还是类比同类项的概念给出“同类二次根式”的概念,能通过实例判断几个二次根式是不是同类二次根式,注意强调先化简的重要性. 例如,分成几个小问题: 把被开方数都是整数的放在一个小题中, 把被开方数都是分数的放在一个小题中, 把被开方数带有简单字母的放在一个小题中, 把字母次数略高于 2的放在一个小题中,使问题的解决有一个由浅入深的渐进过程,最终再给出类似a 1和12孑 的例子.(2 )明确二次根式的加减法运算的实质就是合并同类二次根式,这与整式加减的实质类似加减法的练习 也同样可细分成几个层次进行教学例如: 不需要化简能直接进行
12、相加减的, 需要化简但被开方数都是简单整数的, 被开方数都是有理数但既有整数又有分数的, 被开方数含有字母的,等等.加减运算中常出现的错误类型有: 运算结果含有 J28或类似的式子; 运算过程中有 J4十9 = 2 + 3或J? =J3或类似的问题;片444 _2 运算过程中有.23 =5或1 _、2 =12或类似的问题.33(4 )二次根式的混合运算.教材利用小贴士类比了它与实数、整式运算的联系:第14页:“在有理数范围内成立的运算律,在实数范围内仍成立”;第17页:“在二次根式的运算中,多项式乘法法则和乘法公式仍然适用”.分析式子结构,明确运算顺序;关注乘法公式和运算律的应用;计算少跳步,
13、避免类似5 .3 5-3 =16 , 2.2 .2=8之类的典型错误.例 10 计算:(1) .8-、.2(2)4、545 - 84、. 2(3)(5)2 8 ! 18 - 132 24廖+ (-1 )3-2汉(4)(6)2.12 -4(n 1)013 48 -27,低- 45-10例11 计算:(7)(8)24 -、6打2(1)(5 . 48 -6、274.15) .3(3)1 . 10 (3.15 - 5、6)5(4)(5)(、8、48)(2 - . 12) -(、2(7)(9)(43 -5)2(3.10)15(3 - 、10)15(8)3、3 一26 3,(6)(2、33、2)(2、3
14、-3、2)(5.6) 2 - 2、3)(10) (2 ,3 3 V. 6)(2、3-3、2 二)(11).2 亠一1(,31)J3 +1(12)2站(一3小心b(13)叫A B贏八誇(14)(15)1 I 2 2 12 1 -2 2 1 - , 3 2(16) . ab 、a 、b + . a b 2 (a0, b0) b a b a例12一个长方体的长为2 . 2cm,宽为 3cm,高为,2cm,则它的表面积为 cm2,体积为cm3 .( 8 6、6, 4.3)例13若8_.冇的整数部分是a,小数部分是b,则2ab_b2二. (5)实用文档111111文案大全章节复习及综合(1)条件求值类题
15、目:例14甲、乙两人对题目“求值:J2,其中a二1 ”有不同的解答,5甲的解答:1,! a2 -2工1 a aa-a)2 J 丄aaa a49飞,乙的解答:丄 . 12 a2a aa谁的解答是错误的?为什么?例15(1)如果 a b = 4 . a 2 b -5,那么a 2b =例16(2)若实数X,y 满足.X 2 y2-2 3y 3 = 0,则xy的值是已知:a +丄a-10 ,求 a2 2 的值.(6)a已知:x =丄. 7 -.-5 , y =丄一 7 - i 5 ,求 x2 -xy + y2 的值. (11 )2 2 2(2)寻找规律、现场学习类:例17已知下列等式:.9 9 19
16、=10, .99 99 199 =100,.999 999 1999 =1000,根据上述等式的特点,请你写出第四个等式,并通过计算验证等式的正确性;例18观察上述等式的规律,请你写出第n个等式.(允许写成Q9L9的形式)n个9观察下列等式:2 -1(.2 1)(. 2 -1) 2 1 .3.2(32)(、3- 2)32;4 - 3一 3)(、4,3)(一4回答下列问题:利用你观察到的规律,化简:1计算:+ .122 请根据以上规律写出第 n(n 一1)个不等式,并证明你的结论.(3) 计算下列算式:II +_逅+1 73+0 T3+V2 石+阳 74+府 亦+741 1100、99101.100实用文档文案大全(101 _、.2 9 )(3 )化简和运算技巧(注意隐含条件:字母的取值范围)例24(1)已知a0,化简二次根式. _a3b的正确结果是().A a、., abB. - a . abC. a. ab例25(1)例26计算例27(1)例28(1)把mJ1根号外的因式移到根号内,得(m已知已知).C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光伏支架结构强度分析创新创业项目商业计划书
- 复古工作服修复与改造服务创新创业项目商业计划书
- 家乡味道邮寄服务创新创业项目商业计划书
- 复古宫廷风格真皮转角沙发创新创业项目商业计划书
- 班组安全管理活动方案
- 高校《中国教育简史》作业题库
- 酒店客房服务标准操作流程与质量检查
- 手机应用用户体验改进方案
- 2026云南楚雄市教育体育系统校园招聘教师36人笔试考试备考试题及答案解析
- 电子商务数据安全合规方案
- 冬季驾驶员行车安全培训
- 抹茶生产茶园绿色生产技术规范
- 农业市场现状分析报告
- 中药保健饮料趋势分析报告
- 大坝安全监测仪器的安装与埋设方法课件
- 建筑施工QC小组确保GD廊道伸缩缝水压试验一次成功成果汇报
- 医改监测进展及重点指标解析
- 压力管道计算书
- 铁路基本建设工程设计概(预)算编制办法-国铁科法(2017)30号
- 宗教活动场所规范化管理台账
- 家族性遗传性腺瘤息肉病
评论
0/150
提交评论