




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、本科生毕业设计(论文)外文翻译 a discussion on a limit theorem and its application abstract: this paper proposes that a limit theoremcan help to solve a specific limit problemof sum formula and that some limit of product formula can also be solved by exploiting the feature of logarithm function.keywords: limit the
2、orem; sumformula; product formulaincalculus,we will usually solve a specific limit problem of sum formulabut this sum formula cant sum directly, and it cant change into some kinds of functions integral sum. so it is hard to work out its limit , for solve this problem. this papers proposes is that a
3、limit theorem can help to solve this limit problem of sum formula and that some limit of product formula can also be solved by logarithm function. theorem1 let (a) f be differentiable at x=0 and f (0) =0,(b) g be integrable for xa, b.we haveproof by the (a), for every thereis a 0 such that implies .
4、then by the (b), there exists a real number m0 such that | g(x)| m for xa,b and there is a 0 such thattimplieslet ,so whent0 and let f (x) =x then theorem 1 has becomethis is definition of definite integral , and by logarithm function we getcorollary2 if f be differentiable at x=0 and f (0) =1 and g
5、 be integrable for x into a,b then we havein practical is usually divide 0,1 into n parts, and choose (k=1,2, , n).corollary3let f be differentiable at x=0 and g be integrable for x into 0,1 , then we have(a) if f (0) =0, we have(b)(c) if f(0) =1, we haveproof by that theorem1 and logarithm function
6、, we getexample1evaluate each of the following:solution(a) rewrite the sum in the equivalent formso that by theorem1, (b)rewrite the sum in the equivalent formso that by theorem1,so that by theorem1,(d)let f(x) =sinax and g(x) =x. thenso that by theorem 1,so that by theorem 1,example2evaluate the fo
7、llowing limits:solution(a) we can change the product intoan equivalent from by writinglet f(x) = 1+x and g(x) =x. thenso that by corollary 2,(b) rewrite the product in the equivalent fromso that by corollary 2,example3evaluateof thefollowinglimitso1 王寿生等.微积分解题方法与技巧m.西安:西北工业大学出版社,1990.2 林源渠等.数学分析习题集m
8、.北京:北京大学出版社,1993.3 美波利亚等.数学分析中的问题与定理m.张奠宙等译.上海:上海科技出版社,1985.4 loren c larson. problem-solving through problems m. printed and bound by r. r. donnelley &sons, harrisonburg, virginia. 175 fifth avenue, newyork, newyork10010, u. s. a. springer verlag newyork inc. , 1983.极限的一个定理及其应用摘要:这篇文章给出了一个能较好地解决一类特
9、殊“和式”的极限问题的极限定理。同时,利用对数函数的特性,又能够用来解决一些“积式”的极限。关键词:极限,和式,积式在微积分中,我们经常使用一些特殊的极限来解决和式问题:但是这个式子是不能直接相加的,也不能转换成函数的积分和的形式。所以很难求出它的极限,为了解决这个问题。这篇文章给出了一个极限定理,能较好地解决这一类特殊“和式”的极限问题。同时,利用对数函数又能够用来解决一些“积式”的极限。定理1. 令()在时可微且,()在区间内可积,则其中 :, , 证明:由条件()可知,对任意的存在,当时有由条件()可知,这里有存在一个实数,且在时,存在, 当时有令 ,当时有(因为)另外还有我们注意到到,
10、先前的变量是以为条件的,在的情况中,有我们可以得到:当时当时令,则定理1可以变为这是一个定积分的定义,然后通过对数函数我们可以得到推论2.如果在时可微且,在区间上可积,则有:在实际情况下,我们经常将n等分,取推论3 令在处可微,在上对可积,我们有(a) 如果,我们有(b) 如果,我们有证明:由定理1和对数函数,我们可得例1:求下列各式的值解:(a)以等价形式进行和的重置:令 且 则且根据定理1得:待添加的隐藏文字内容3 (b)以等价形式进行和的重置:令 且 则则根据定理1得(c)令=且则 且 则根据定理1得(d)令且则且则根据定理1得(e)令且则且根据定理1得例2:求下列各式的极限解:(a)我们可以以等价形式写出积的变换:令且得 且 则根据推论2得 (b)以等价形式写出积的重置令且,则则根据推论2得例3求下式极限解:令,将平均分成份,选择点则所以, 参考文献:1王寿生等. 微积分解题方法与技巧m . 西安:西北工业大学出版社,1990.2林源渠等. 数学分析习题集m . 北京:北京大学出版社,1993.3美波利亚等. 数学分析中的问题与定理m . 张奠宙等译. 上海:上海科技出版社,1985.4loren c larson. problem2solving through problems m . printed and bound by r. r.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年天津市西青区中考二模物理试题(解析版)
- 《4.3 维权行动》(教学设计)-2023-2024学年五年级下册综合实践活动安徽大学版
- 2025年全国起重机操作证-特种设备作业人员考试题库(含答案)
- 第1课 中华人民共和国成立-2025-2026学年八年级历史下册核心素养驱动说课稿
- 2025年高考生物试题分类汇编酶与ATP及物质运输(原卷版)
- 乡愁题目分析及解析答案
- 2025护肤品采购与销售合同
- 2025合同文件是否应作为合同及组成部分
- 物业安全试题库及答案
- 物权法原来题库及答案
- 物业沟通技巧培训
- 2025至2030中国美容祛斑仪行业发展趋势分析与未来投资战略咨询研究报告
- 2025-2030年中国连续性肾脏替代治疗(CRRT)行业市场现状供需分析及投资评估规划分析研究报告
- 现场员工计件管理制度
- 健康养老课件模板
- 高效人员管理的5大核心思路与方法
- 《物业管理条例》教学课件
- TCNAS 28─2023成人住院患者静脉血栓栓塞症的预防护理
- (高清版)DB3301∕T 0046-2017 智精残疾人托养机构护理服务规范
- 基层司法所规范化建设
- 经济学基础课件 项目三 支付结算法律制度
评论
0/150
提交评论