2015届高考数学(浙江专用理科)必考题型过关练:专题7 第29练(含答案)_第1页
2015届高考数学(浙江专用理科)必考题型过关练:专题7 第29练(含答案)_第2页
2015届高考数学(浙江专用理科)必考题型过关练:专题7 第29练(含答案)_第3页
2015届高考数学(浙江专用理科)必考题型过关练:专题7 第29练(含答案)_第4页
2015届高考数学(浙江专用理科)必考题型过关练:专题7 第29练(含答案)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第29练双曲线的渐近线和离心率题型一双曲线的渐近线问题例1(2013·课标全国)已知双曲线C:1(a>0,b>0)的离心率为,则C的渐近线方程为()Ay±x By±xCy±x Dy±x破题切入点根据双曲线的离心率求出a和b的比例关系,进而求出渐近线答案C解析由e知,a2k,ck(kR),由b2c2a2k2,知bk.所以.即渐近线方程为y±x.故选C.题型二双曲线的离心率问题例2已知O为坐标原点,双曲线1(a>0,b>0)的右焦点为F,以OF为直径作圆与双曲线的渐近线交于异于原点的两点A,B,若()·0

2、,则双曲线的离心率e为()A2 B3C. D.破题切入点数形结合,画出合适图形,找出a,b间的关系答案C解析如图,设OF的中点为T,由()·0可知ATOF,- 1 - / 14又A在以OF为直径的圆上,A,又A在直线yx上,ab,e.题型三双曲线的渐近线与离心率综合问题例3已知A(1,2),B(1,2),动点P满足.若双曲线1(a>0,b>0)的渐近线与动点P的轨迹没有公共点,则双曲线离心率的取值范围是_破题切入点先由直接法确定点P的轨迹(为一个圆),再由渐近线与该轨迹无公共点得到不等关系,进一步列出关于离心率e的不等式进行求解答案(1,2)解析设P(x,y),由题设条件

3、,得动点P的轨迹为(x1)(x1)(y2)·(y2)0,即x2(y2)21,它是以(0,2)为圆心,1为半径的圆又双曲线1(a>0,b>0)的渐近线方程为y±x,即bx±ay0,由题意,可得>1,即>1,所以e<2,又e>1,故1<e<2.总结提高(1)求解双曲线的离心率的关键是找出双曲线中a,c的关系,a,c关系的建立方法直接反映了试题的难易程度,最后在求得e之后注意e>1的条件,常用到数形结合(2)在求双曲线的渐近线方程时要掌握其简易求法由y±x±00,所以可以把标准方程1(a>0

4、,b>0)中的“1”用“0”替换即可得出渐近线方程双曲线的离心率是描述双曲线“张口”大小的一个数据,由于,当e逐渐增大时,的值就逐渐增大,双曲线的“张口”就逐渐增大1已知双曲线1(a>0,b>0)以及双曲线1的渐近线将第一象限三等分,则双曲线1的离心率为()A2或 B.或C2或 D.或答案A解析由题意,可知双曲线1的渐近线的倾斜角为30°或60°,则或.则e 或2,故选A.2已知双曲线C:1 (a>0,b>0)的左,右焦点分别为F1,F2,过F2作双曲线C的一条渐近线的垂线,垂足为H,若F2H的中点M在双曲线C上,则双曲线C的离心率为()A.

5、B. C2 D3答案A解析取双曲线的渐近线yx,则过F2与渐近线垂直的直线方程为y(xc),可解得点H的坐标为,则F2H的中点M的坐标为,代入双曲线方程1可得1,整理得c22a2,即可得e,故应选A.3已知双曲线1(a>0,b>0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()A.1 B.1C.1 D.1答案A解析双曲线1的渐近线方程为y±x,圆C的标准方程为(x3)2y24,圆心为C(3,0)又渐近线方程与圆C相切,即直线bxay0与圆C相切,2,5b24a2.又1的右焦点F2(,0)为圆心C(3,0),a2b29.由得

6、a25,b24.双曲线的标准方程为1.4已知双曲线1(a>0,b>0)的左,右焦点分别为F1(c,0),F2(c,0),若双曲线上存在点P使,则该双曲线的离心率的取值范围是()A(1,1) B(1,)C(,) D(1,)答案A解析根据正弦定理得,由,可得,即e,所以|PF1|e|PF2|.因为e>1,所以|PF1|>|PF2|,点P在双曲线的右支上又|PF1|PF2|e|PF2|PF2|PF2|(e1)2a,解得|PF2|.因为|PF2|>ca(不等式两边不能取等号,否则题中的分式中的分母为0,无意义),所以>ca,即>e1,即(e1)2<2,解

7、得e<1.又e>1,所以e(1,1)5(2014·湖北)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且F1PF2,则椭圆和双曲线的离心率的倒数之和的最大值为()A. B.C3 D2答案A解析设|PF1|r1,|PF2|r2(r1>r2),|F1F2|2c,椭圆长半轴长为a1,双曲线实半轴长为a2,椭圆、双曲线的离心率分别为e1,e2,由(2c)2rr2r1r2cos ,得4c2rrr1r2.由得所以.令m,当时,mmax,所以()max,即的最大值为.6(2014·山东)已知a>b>0,椭圆C1的方程为1,双曲线C2的方程为1

8、,C1与C2的离心率之积为,则C2的渐近线方程为()Ax±y0 B.x±y0Cx±2y0 D2x±y0答案A解析由题意知e1,e2,e1·e2·.又a2b2c,ca2b2,ca2b2,1()4,即1()4,解得±,.令0,解得bx±ay0,x±y0.7若椭圆1(a>b>0)与双曲线1的离心率分别为e1,e2,则e1e2的取值范围为_答案(0,1)解析可知e1,e1,所以ee2>2e1e10<e1e2<1.8过双曲线1 (a>0,b>0)的左焦点F作圆x2y2的切线

9、,切点为E,延长FE交双曲线的右支于点P,若E为PF的中点,则双曲线的离心率为_答案解析设双曲线的右焦点为F,由于E为PF的中点,坐标原点O为FF的中点,所以EOPF,又EOPF,所以PFPF,且|PF|2×a,故|PF|3a,根据勾股定理得|FF|a.所以双曲线的离心率为.9(2014·浙江)设直线x3ym0(m0)与双曲线1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|PB|,则该双曲线的离心率是_答案解析双曲线1的渐近线方程为y±x.由得A(,),由得B(,),所以AB的中点C坐标为(,)设直线l:x3ym0(m0)

10、,因为|PA|PB|,所以PCl,所以kPC3,化简得a24b2.在双曲线中,c2a2b25b2,所以e.10(2013·湖南)设F1,F2是双曲线C:1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|PF2|6a,且PF1F2的最小内角为30°,则双曲线C的离心率为_答案解析不妨设|PF1|>|PF2|,则|PF1|PF2|2a,又|PF1|PF2|6a,|PF1|4a,|PF2|2a.又在PF1F2中,PF1F230°,由正弦定理得,PF2F190°,|F1F2|2a,双曲线C的离心率e.11P(x0,y0)(x0±

11、;a)是双曲线E:1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求的值解(1)点P(x0,y0)(x0±a)在双曲线1上,有1.由题意又有·,可得a25b2,c2a2b26b2,则e.(2)联立得4x210cx35b20.设A(x1,y1),B(x2,y2)则设(x3,y3),即又C为双曲线上一点,即x5y5b2,有(x1x2)25(y1y2)25b2.化简得2(x5y)(x5y)2(x1x25y

12、1y2)5b2.又A(x1,y1),B(x2,y2)在双曲线上,所以x5y5b2,x5y5b2.由(1)可知c26b2,由式又有x1x25y1y2x1x25(x1c)(x2c)4x1x25c(x1x2)5c210b2.得240,解得0或4.12(2014·江西)如图,已知双曲线C:y21(a>0)的右焦点为F.点A,B分别在C的两条渐近线上,AFx轴,ABOB,BFOA(O为坐标原点)(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y00)的直线l:y0y1与直线AF相交于点M,与直线x相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值解(1)设F(c,0),直线OB方程为yx,直线BF的方程为y(xc),解得B(,)又直线OA的方程为yx,则A(c,),kA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论