版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.3.2空间两点间的距离【课时目标】1掌握空间两点间的距离公式2能够用空间两点间距离公式解决简单的问题1在空间直角坐标系中,给定两点P1(x1,y1,z1),P2(x2,y2,z2),则P1P2_特别地:设点A(x,y,z),则A点到原点的距离为:OA_2若点P1(x1,y1,0),P2(x2,y2,0),则P1P2_3若点P1(x1,0,0),P2(x2,0,0),则P1P2_一、填空题1若A(1,3,2)、B(2,3,2),则A、B两点间的距离为_2在长方体ABCDA1B1C1D1中,若D(0,0,0)、A(4,0,0)、B(4,2,0)、A1(4,0,3),则对角线AC1的长为_3到点
2、A(1,1,1),B(1,1,1)的距离相等的点C(x,y,z)的坐标满足的关系式为_4已知A(2,1,1),B(1,1,2),C(2,0,1),则ABC的形状为_三角形5已知A(x,5x,2x1),B(1,x2,2x),当AB取最小值时,x的值为_6点P(x,y,z)满足2,则点P的集合为_7在空间直角坐标系中,正方体ABCDA1B1C1D1的顶点A(3,1,2),其中心M的坐标为(0,1,2),则该正方体的棱长为_8已知P到直线AB中点的距离为3,其中A(3,5,7),B(2,4,3),则z_9在空间直角坐标系中,已知点A(1,0,2),B(1,3,1),点M在y轴上,且M到A与到B的距离
3、相等,则M的坐标是_二、解答题10在xOy平面内的直线xy1上确定一点M,使它到点N(6,5,1)的距离最小- 2 - / 711如图所示,BC4,原点O是BC的中点,点A的坐标为(,0),点D在平面yOz上,且BDC90°,DCB30°,求AD的长度能力提升12已知正方形ABCD、ABEF的边长都是1,且平面ABCD平面ABEF,点M在AC上移动,点N在BF上移动,若CMBNa(0a )(1)求MN的长;(2)当a为何值时,MN的长最小13在长方体ABCDA1B1C1D1中,ABAD3,AA12,点M在A1C1上,MC12A1M,N在D1C上且为D1C中点,求M、N两点间
4、的距离空间中两点的距离公式,是数轴上和平面上两点间距离公式的进一步推广,反之,它可以适用于平面和数轴上两点间的距离的求解设P1(x1,y1,z1),P2(x2,y2,z2),则d(P1,P2),当P1,P2两点落在了坐标平面内或与坐标平面平行的平面内时,此公式可转化为平面直角坐标系中的两点间距离公式,当两点落在坐标轴上时,则公式转化为数轴上两点间距离公式232空间两点间的距离 答案知识梳理123|x1x2|作业设计15解析AB52解析由已知求得C1(0,2,3),AC13xyz0解析ACBC(x1)2(y1)2(z1)2(x1)2(y1)2(z1)2即xyz04直角解析AB,BC,AC1,AB
5、2AC2BC2故构成直角三角形5解析AB,当x时,AB最小6以点(1,1,1)为球心,以2为半径的球面780或4解析利用中点坐标公式,则AB中点C,PC3,即3,解得z0或z49(0,1,0)解析设M的坐标为(0,y,0),由MAMB得(01)2(y0)2(02)2(01)2(y3)2(01)2,整理得6y60,y1,即点M的坐标为(0,1,0)10解点M在直线xy1(xOy平面内)上,可设M(x,1x,0)MN,当且仅当x1时取等号,当点M坐标为(1,0,0)时,(MN)min11解由题意得B(0,2,0),C(0,2,0),设D(0,y,z),则在RtBDC中,DCB30°,BD2,CD2,z,y1D(0,1,)又A(,0),AD12解平面ABCD平面ABEF,平面ABCD平面ABEFAB,ABBE,BE平面ABCD,AB、BC、BE两两垂直过点M作MGAB,MHBC,垂足分别为G、H,连结NG,易证NGABCMBNa,CHMHBGGNa,以B为原点,以AB、BE、BC所在的直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系Bxyz,则M,N(1)MN,(2)由(1)得,当a时,MN最短,最短为,这时M、N恰好为AC、BF的中点13解如图分别以AB、AD、AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系由题意可知C(3,3,0),D(0,3,0),DD1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路桥梁工程施工测量专项方案
- 连云港市中医院功能失调性子宫出血诊疗考核
- 厦门市人民医院实习生进修生小讲课质量评价
- 台州市中医院人工肝支持系统操作护士资格认证
- 台州市中医院医学美容科住院医师规范化培训考核
- 九江市人民医院太平间管理考核与人文关怀要求
- 泰州市人民医院护理流程再造考核
- 宿迁市中医院放射治疗紧急情况应急预案笔试试题
- 大兴安岭中医院大量输血方案考核
- 漳州市人民医院颈椎术后康复指导技能考核
- 茶叶对应茶具使用
- 建筑施工规范培训课件
- 2025年中国α-苯乙胺市场调查研究报告
- 生产副总工作总结及工作计划(范文)
- JG/T 118-2018建筑隔震橡胶支座
- T/CI 312-2024风力发电机组塔架主体用高强钢焊接性评价方法
- 高考热点题型与考点专练政治题型7双模块设问限定类非选择题
- 医疗废物院感试题及答案
- 2024北京首师大附中高一(下)期中数学试题
- 中医诊所招学徒合同标准文本
- 医务人员感染性病原体职业暴露预防、处置及上报制度
评论
0/150
提交评论