




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 2 章力矩与力偶2.1力对点的矩从实践中知道,力对物体的作用效果除了能使物体移动外,还能使物体转动,力矩就 是度量力使物体转动效果的物理量。力使物体产生转动效应与哪些因素有关呢?现以扳手拧螺帽为例,如图 2.12.1 所示。手加在扳手上的力F,使扳手带动螺帽绕中心0转动。力F越大,转动越快;力的作用线离转动中心越远,转动也 越快;如果力的作用线与力的作用点到转动中心0点的连线不垂直,则转动的效果就差;当力的作用线通过转 动中心0时,无论力F多大也不能扳动螺帽, 只有当力 的作用线垂直于转动中心与力的作用点的连线时,转动 效果最好。另外,当力的大小和作用线不变而指向相反 时,将使物体向相反的
2、方向转动。在建筑工地上使用撬 杠抬起重物,使用滑轮组起吊重物等等也是实际的例子。 通过大量的实践总结出以下的规律:力使物体绕某点转 动的效果,与力的大小成正比,与转动中心到力的作用线的垂直距离 d d 也成正比。这个垂直距离称为力臂,转动中心称为力矩中心( (简称矩心) )。力的大小与力臂的乘积称为力F F 对点0之矩( (简称力矩) ),记作mo(F)。计算公式可写为mo(F) F d式中的正负号表示力矩的转向。在平面内规定:力使物体绕矩心作逆时针方向转动时,力矩为正;力使物体作顺时针方向转动时,力矩为负。因此,力矩是个代数量。 力矩的单位是N m或kN m。由力矩的定义可以得到如下力矩的性
3、质:(1)(1)力F对点0的矩,不仅决定于力的大小,同时与矩心的位置有关。矩心的位置不 同,力矩随之不同;(2)(2) 当力的大小为零或力臂为零时,则力矩为零;(3)(3) 力沿其作用线移动时,因为力的大小、方向和力臂均没有改变,所以,力矩不变。(4)(4) 相互平衡的两个力对同一点的矩的代数和等于零。(2.1(2.1I P例 2.12.1 分别计算图22中Fi、F2对0点的力矩。解 从图 2 2 -2-2 中可知力Fi和F2对0点的力臂是h和12。故 m mO(F)= = F Fi11= = F Fi11sin30sin300=49=49 X0.10.1 X0.5=2.45N.m0.5=2.
4、45N.mm mO(F)= = F F212= = F F212= = 16.316.3 x0.15=2.445N.m0.15=2.445N.m必须注意:一般情况下力臂并不等于矩心与力的作用点的距离,女口Fi的力臂是h,不是li。2.2合力矩定理在计算力对点的力矩时,有些问题往往力臂不易求出,因而直接按定义求力矩难以计 算。此时,通常采用的方法是将这个力分解为两个或两个以上便于求出力臂的分力, 在由 多个分力力矩的代数和求出合力的力矩。这一有效方法的理论根据是合力矩定理,即:如果有n个平面汇交力作用于A点,则平面汇交力系的合力对平面内任一点之矩,等于力系中各分力对同一点力矩的代数和:即m m(
5、F(FR)=m)=mo(F(F1)+)+ m mO(F2)+ + + m mo(F(Fn) ) = = Bn nO(F)(2.2)(2.2)称为合力矩定理。合力矩定理一方面常常可以用来确定物体的重心位置;另一方面也可以用来简化力矩的计算。这样就使力矩的计算有两种方法:在力臂已知或方便求解时,按力矩定义进行计算; 在计算力对某点之矩,力臂不易求出时,按合力矩定理求解,可以将此力分解为相互垂直 的分力,如两分力对该点的力臂已知,即可方便地求出两分力对该点的力矩的代数和,从 而求出已知力对该点矩。例 2.22.2 计算图 2.32.3 中F对0点之矩。解F对0点取矩时力臂不易找出。 将 F F 分解
6、 成互相垂直的两个分力 FX、FY,它们对0点的矩分 别为m mo(F(Fx)=F)=Fxb=Fbsinb=Fbsinm mO(FY)= F FYa=Facosa=Facos由合力矩定理/J=16.3N图Z3m mo(F)=(F)= m mo(F(Fx)+)+ m mO(FY)= FbsinFbsin+ + FacosFacos例 2.32.3 槽形杆用螺钉固定于点O,如图 2.42.4 (a a)所示。在杆端点 其大小为400N,试求力F对点O的矩。于是力 F F 对点O的矩为m mo(F)=Fd=(F)=Fd= 400400 X83.9=33560Nmm83.9=33560Nmm“一”号表
7、示力 F F 将使槽形杆绕点O有顺时针方向转动的趋势。方法 2(2(按合力矩定理计算) ):将力 F F 分解为水平力 FX和铅直力由合力矩定理知,力F F 对点O的矩就等于分力 F Fx、FY对同一点O的矩的代数和,即m mo(F)=(F)= m mo(F(Fx)+)+ m mO(FY) = = F FxX120+F120+FYX40= =400sin60400sin600X120+400cos60120+400cos600X4040= =41560+8000=41560+8000= 33560Nmm33560Nmm可见两种方法结果完全一样。但在方法1 1 中,求力Fp对点O的矩需要通过几何
8、关系才能找出力臂,计算比较麻烦;而方法2 2 用合力矩定理计算则比较简便。在实际计算中,常用合力矩定理来求力矩或合力作用线的位置。) ):本题中力F的大小和方向均已知, 矩,关键是找出力臂的长度。为此,自矩心O作力F作用线的垂线 臂d,如图 2.42.4(b b)所示。ABO可得解 方法 1(1(按力矩定义计算要计算力 F F 对点0的0C,线段0C就是力由图 2.42.4 ( b b )中的tan詈0.333AO18.43:BOsin412.65cm0.3162而在ACO中,60;18.4341.57,所以AO sin12.65sin 41.578.39cmFY,如图 2.42.4( c c
9、)所示。力偶和力偶矩在生产实践和日常生活中,为了使物体发生转动,常常在物体上施加两个大小相等、方向相反、不共线的平行力。例如钳工用丝锥攻丝时两手加力在丝杠上(图 2.52.5 所示)。当大小相等、方向相反、不共线的两个平行力F和F,作用在同一物体时,它们的合力FR0,即F和F,没有合力。但因二力不共线,所以也不能平衡。它们的作用效果是 使物体发生转动。力学上把这样大小相等、方向相反、不共线的两个平行力叫力偶。用符 号(F, ,F/)表示。两个相反力之间垂直距离d叫力偶臂(如图 2.62.6 所示),两个力的作用线所 在的平面称为力偶作用面。力偶不能再简化成比力更简单的形式,所以力偶与力一样被看
10、 成是组成力系的基本元素。如何度量力偶对物体的作用效果呢?由实践可知,组成力偶的力越大,或力偶臂越大,则力偶使物体转动的效应越强;反之,就越弱。这说明力偶的转动效应不仅与两个力的大 小有关,而且还与力偶臂的大小有关。与力矩类似,用力偶中一个力大小和力偶臂的乘积 并冠以适当正负号(以示转向)来度量力偶对物体的转动效应,称为力偶矩,用m表示。即m Fd(2.32.3)使物体逆时针方向转动时,力偶矩为正;反之为负。如图2.62.6 所示。所以力偶矩是代数量。力偶矩的单位与力矩的单位相同,常用牛顿米(N m)。通过大量实践证明,度量力偶对物体转动效应的三要素是:力偶矩的大小、力偶的转向、力偶的作用面。
11、不同的力偶只要它们的三要素相同,对物体的转动效应就是一样的。力偶的基本性质性质 1 1 力偶没有合力,所以力偶不能用一个力来代替,也不能与一个力来平衡。从力偶的定义和力的合力投影定理可知,力偶中的二力在其作用面内的任意坐标轴上 的投影的代数和恒为零,所以力偶没有合力,力偶对物体只能有转动效应,而一个力在一2.42.3力偶及其基本性质2.4.1Rf 2.5IS 2.G般情况下对物体有移动和转动两种效应。 因此, 力偶与力对物体的作用效应不同, 所以其 不能与一个力等效,也不能用一个力代替,也就是说力偶不能和一个力平衡,力偶只能和 转向相反的力偶平衡。性质 2 2 力偶对其作用面内任一点之矩恒等于
12、力偶矩,且与矩心位置无关。图 2.72.7 所示力偶(F, ,F),其力偶臂为d,逆时针转向,其力偶矩为m Fd,在其所 在的平面内任选一点0为矩心,与离F,的垂直距离 为x,则它到F的垂直距离为x d。显然,力偶对0点的力矩是力F与F分别对0点的力矩的代数和。其值为:mO(F, F ) F (d x) F x Fd m由于O点是任意选取的,所以性质2 2 已得证。性质 3 3 在同一平面内的两个力偶,如果它们的 力偶矩大小相等,转向相同,则这两个力偶等效。称为力偶的等效条件。从以上性质可以得到两个推论。推论 1 1 力偶可在其作用面内任意转移,而不改变它对物体的转动效应,即力偶对物 体的转动
13、效应与它在作用面内的位置无关。例如图 2.82.8(a a)作用在方向盘上的两上力偶 (R R,F)与(F2,F)只要它们的力偶矩大小相等,转向相同,作用位置虽不同,转动效应是相同的。推论 2 2 在力偶矩大小不变的条件下,可以改变力偶中的力的大小和力偶臂的长短;而不改变它对物体的转动效应。例如图 2.82.8(b b)所示,工人在利用丝锥攻螺纹 时,作用在螺纹杠上的(F,,F)或(F2,F), 虽然d!和d2不相等,但只要调整力的大小,使 力偶矩FidiF2d2,则两力偶的作用效果是相同的。图Z N从上面两个推论可知,在研究与力偶有关的问题时,不必考虑力偶在平面内的作用位 置,也不必考虑力偶
14、中力的大小和力偶臂的长短,只需考虑力偶的大小和转向。所以常用 带箭头的弧线表示力偶,箭头方向表示力偶的转向,弧线旁的字母 m m 或者数值表示力偶矩的大小,如图 2.92.9 所示。2.5平面力偶系的合成与平衡2.5.1平面力偶系的合成作用在物体上的一群力偶或一组力偶,称为力偶系。作用面均在同一平面内的力偶系 称为平面力偶系。因为力偶对物体的作用效果是转动,所以同一平面上的多个力偶对物体的作用效果也 是转动,作用在同一物体上的多个力偶的合成的结果必然也应该是一个力偶,并且这个力 偶的力偶矩等于各个分力偶的力偶矩之和。即作用在同一平面上的若干力偶,可以合成为 一个合力偶,其合力偶矩等于各分力偶矩
15、的代数和:即M叶m2| 卄mnm(2.4)(2.4)例 2.42.4 如图 2.102.10 所示,在物体的某平面内受到三个力偶的作用,设Fi200N,F2600N,m 300N m,求它们的合力偶矩。解各力偶矩分别为miFid200 1200N mm2F2d60025、300N msin 30mim300 N m由(2(2 4)4)式可得合力矩为M m mim? m3200 300 300200N m即合力偶矩的大小为200N m,顺时针转向,作用在原力偶系的平面内。2.4.22.4.2 平面力偶系的平衡条件平面力偶系可以合成为一个合力偶,当合力偶矩等于零时, 物体处于平衡状态; 反之,力偶
16、矩不为零,则物体必产生转动效应而不平衡。这样可得到平面力偶系平衡的必要和充 分条件是:力偶系中所有各力偶的力偶矩的代数和等于零。即:图2. 10上式称为平面力偶系的平衡方程。应用式(2.5)2.5)解决平面力偶系的平衡问题,只能求出一个未知量。例 2.52.5 梁AB上作用有一力偶,其转向如图2.112.11 (a)(a),力偶矩m 15kN m。梁长l3m,梁的自重不计,求A、B处支座反力。解梁的B端是可动铰支座,其支座反力FB的方向是沿垂直方向的;梁的A端是固定铰支座,其反力的方向本来是未定的,但因梁上只受一个力偶的作用,根 据力偶只能与力偶平衡的性质,FA必须与FB组成一个力偶。这样FA
17、的方向也只能是沿垂直方向的,假设 与FB的指向如图 2.11(b)2.11(b)所示,由平面力偶系的平衡条 件得FBR5KN( ( 0本章小结1 1 力矩是力使物体绕某一点转动效应的度量。 力矩的大小等于力与矩心到力的作用 线的垂直距离的乘积,力矩的转向用正、负号来表示;因而在平面问题中,力矩可看成是 代数量。2 2 力偶是由大小相等、方向相反、作用线平行但不重合的两个力所组成的一个特殊 力系。力和力偶是力学中两个最基本的机械作用量。力对刚体作用一般都有移动和转动两种 效应;而力偶对刚体却只有转动效应,没有移动效应。力偶既不能用一个力代替,也不能 与一个力平衡,力偶只能用力偶来平衡。力偶使刚体
18、转动的效应用力偶矩来度量。力偶矩的大小等于力偶中任一力的大小与两 力之间的垂直距离的乘积,力偶矩的转向用正、负号来表示,因而在平面问题中,力偶矩 可看成是代数量。力矩是力使物体绕某点转动效应的度量,而力偶是最基本的机械作用量,力矩与力偶 是两种不同的概念,不能混淆。(2.5(2.5) )mRAl0155KN(f)(f)3RA3 3 力偶在任一轴上的投影恒等于零; 力偶对其作用面内任一点的矩恒等于力偶矩,而与矩心的位置无关;力偶可以在其刚体的作用面内任意移动,也可以在力偶矩保持不变 的条件下同时改变力偶中力的大小和力偶臂的长短,而不改变它对刚体的效应。但必须注 意,所谓任意移动是指在所作用的刚体内移动,而不能将它移动到另外的刚体上。掌握力 偶的这些性质,无论对于力系简化的理论或解决有关力偶作用下物体的平衡问题,都是非 常重要的。4 4 平面力偶系合成的结果是一个合力偶;合力偶的力偶矩等于力偶系中各分力偶的 力偶矩的代数和。平面力偶系平衡的必要和充分条件是合力偶矩等于零,即力偶系中各力 偶的力偶矩的代数和等于零。思考试2.12.1 什么是力矩?什么是力偶?有何异同?举例说明。22力偶有哪几条性质?2.32.3力偶的三要素是什么?2.42.4怎样的力偶才是等效力偶?习题2.1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 低价封闭货车出租合同范例
- 入股意向合同范例
- 公共房屋委托购买合同范例
- 商务礼仪师关于时间管理的技巧试题及答案
- 2025年一级建造师考试测试分析试题及答案
- 医学护理说课答辩
- 初级审计师核心知识的评估题及答案
- 设计合理的复习计划2024年纺织机械操作证书考试试题及答案
- 2024年审计师考试知识整合试题及答案
- 复习方法提升Adobe设计师考试效果试题及答案
- 《架空、管道、直埋光缆线路工程施工规范》
- 《第七天》读书分享交流会
- 师德师风个人档案表
- 比亚迪财务分析
- 山西众辉电力服务公司历年真题
- -医院感染预防与控制标准操作规程SOP第2版
- 《孝经》教学课件
- 生物有机肥生产技术可行性分析报告
- 供水管网巡查管理制度
- 2021年中国中车公司组织架构和部门职能
- 工程设计资质专业人员专业对照表
评论
0/150
提交评论