下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课时作业河籃易】、填空题1 -已知不等式X2- 2x-3<0的解集为A,不等式x2 + X- 6<0的解集是B,不等 式x?+ ax+ b<0的解集是AH B,那么a+ b等于解析:由题意:A二x| 1 <x<3, B二x 3<x<2, AH B 二x| 1 <x<2,由根与系数的关系可知:a二一 1, b二2,a+ b3.2某产品的总成本y (万元)与产量X (台)之间的函数关系是y 3 000+ 20x 0.1x2(ovx<24O),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是 解析:依题意得
2、25x>3 000+ 20x 0.1x3整理得 xJ 50x 30 000>0,解得 x> 150 或 x一 200,因为 0vxv240,所以 150Wx<240,即最低产量是150台.答案:150台3 不等式p> 0的解集是X 1解析:"(X 1 X 2°等价于戶0所以不等式 0的解集为(1,2.X 1答案:(1,24在R上定义运算?: x?y- (1- x)(1 + y).若不等式(x a)?(x+ a)<1对任意的实数X都成立,则实数a的范围是 解析:由题知,(X a)?(x + a) (1 X+ a)(1 + x+ a) (1
3、+ a) xvl 恒成 立,即x2>(1 + a)2- 1恒成立,故只要(1 + a尸一1v0恒成立,即aJ 2a<0,解得一2<a<0.答案:2<a<05.设函数f(x) 的x>0C,若 f( - 4) - f(0), f( 2) 0,则关于 X乂 + bx+ c (x< 0)不等式f(x) w 1的解集为解析:当 x< 0 时,f(x)= X+ bx+ C 且 f( 4)= f(0),故其对称轴为 X二2=2、二 b二 4又 f( 2)二 4 8+ c= 0, C二 4,令 x? + 4x+ 4< 1 有一 3<x<
4、1;当 x>0时,f(x)二一2< 1显然成立,故不等式的解集为3, 1U(0,+J.答案:3, 1U(0,+J 6.若关于X的不等式(2ax- 1)lnx>0对任意x (0, + J恒成立,则实数a的值为 解析:若X二1,则原不等式恒成立,此时a R;若x>1,则In x>0,于是2ax 10,即 a>(±)max,所以 a> 扌;若 0vxv1,贝!J In x<0,于是 2ax 10,即 a< (以加和,所以a2综上所述,a=q.7命题P:方程/ X+ a? 6a二0有一正根和一负根.命题q:函数y= x? + (a 3)x
5、+ 1的图象与X轴有公共点若命题“ P或q”为真命题,而命题“ P且q”为假命题,贝U实数a的取值范围是 解析:由命题 P,得 XiX2= a? 6a<0,即 0<a<6;由命题 q,得2= (a 3)?4>0,即a5或a 1;根据题意,可知命题P与命题q真一假,当命题p真且命题q假时,a (1,5):当命题q真且命题P假时,a - , 0 U 6 , +J,综上,a (八,0U(1,5)U6,+).答案:(一 X,0U(1,5)U6,+J若存&在实数X,使得x? 4bx+ 3b<0成立,则b的取值范围是23解析:本题是存在性命题,只要满足= 16b 12
6、b>0即可,解得bvO或b>03答案:(一, 0)U(4, +*) 9.若关于X的不等式X+八X(才0对任意n 在(一巴q上恒成立,则实 常数入的取值范围是211 n*解析:由已知得/+ Ax>(2)对任意nN在(一X,q上恒成立.n 7*黑2N ;2 11 一、 X +2x2在(一x,才上恒成立.2丄丄 当 冶一 1时,X+2X,在(一X,刀上恒成立.答案:(X 1 10.已知 f(x) = ax? + X a, a R,17若函数f(x)有最大值y,求实数a的值;(2)解不等式f(x)>1(a R).1 21 + 4a解析:(1)f(x)二a(x+2A) 4a- a
7、>0 时不合题意.1当a<0时,X二一石,J 口 1 + 4a 17 f(x)4 最大值且一4a解得:a二一2或a二一2(2)f(x)>1,即 ax + X a>1, (X 1)(ax+ a+ 1)>0.当a = 0时,x>1 :1 a>0 时,x>1 或 x< 1 a1 2当a二一2时,(X1)2<0,无解;当 一 ZvavO 时,1vxv 1 2'a当 a<一;时,一1 : vx<1.2a11.若不等式2x 1>m(x2 1)对满足一2 mW2的所有m都成立,求x的取值范 围.解析:原不等式化为(x? 1
8、)m-(2x-1)<0,记 f(m)= (x? 1)m-(2y1)(-2< m< 2).f ( 2 尸 一 2(x2 i)_(2x 1 <0222x +f 2 = 2 X 1 2x 1 <02x 3>0,即22x 2x 1<0,解得X的取值范围为一1+ ; 7 l+d3 12.某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为120 6t吨(0< t< 24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象?解析:设t小时后蓄水池中的水量为y吨,则y二400+ 60t 120.6t(0< t<24).令 X = 6t, y二 400+ 10x2 120X二 10(x 6)? + 40(0< x< 12), 当 X= 6,即 t= 6 时,ymin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租房合同中介要签名(3篇)
- 2025太原市房屋租赁合同
- 2025船舶融资租赁合同范文
- 2025年模特儿用工合同样本
- 2025石油购销标准合同范本
- 电焊工证-上岗证考试试题题库模拟训练含答案
- 2025授权代理招聘合同
- 办公椅设计调研
- 污水处理个人年终工作总结范文(4篇)
- 痛风性关节炎症状诊断及护理守则
- 细节决定成败(最终版)课件
- 商品和服务税收分类编码(开票指引)
- 老年人认知功能智力状态简易评价量表(MMSE)
- 探究平面镜成像特点
- IDC系列报告之六:从DCF角度看IDC行业的长期投资价值正式版
- 横向HDPE排水管施工方案
- GB/T 24291-2009纸和纸板卷筒纸芯内径的规定
- 【人教版】九年级化学上册全册-课件
- 业务连续性管理计划
- 高中英语选择性必修三 全部课文原文翻译
- GMP质量体系34-400型快装酒精回收塔岗位操作规程
评论
0/150
提交评论