一维径向流数值模拟_第1页
一维径向流数值模拟_第2页
一维径向流数值模拟_第3页
一维径向流数值模拟_第4页
一维径向流数值模拟_第5页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1一维径向单相流数学模型 对于单井问题,通常将井底周围的流动看作一维径向流, 是井底周围的流量大、压力变化快,而远离井底处流量小、压力变化小,因此采 用不等距网格。 为模拟一维径向单相流,首先要恰当的建立其数学模型,模型的假设如下: (1)一维径向流动; (2)单相流体且微可压缩; (3)不考虑岩石的压缩性(即岩石不可压缩,?=常数); (4)油藏是均质的,即 k,?为常数,流体粘度小也为一常数。 (5)不考虑重力的影响。 根据质量守恒原理建立的柱坐标系下单相流的数学模型为: 工鸟/卓)目(/需)+孰/也毕)二今“(1-1) ra尹点r(jOFOzzdzdt 当只存在径向渗流时,一维径向单相流

2、的数学模型可简化为: 型6吟)二如以)(1-2) rc?rrcrt 考虑均质油藏、流体微可压缩、岩石不可压缩,上述数学模型可简化为: 10|若用二加若用二加 c1p(1-3) rOrrdrt 假设 k,?,灶匀为常数,则上述方程可简化为: 1g(孕)也空(1-4) rc,rcr,kct 方程为(1-4)即为所求的一维径向单相流的数学模型。方程中的未知量为 p(r,t),通过求解可得沿径向上各点的压力分布及其随时间的变化。 初始条件为:此时最典型的特点 P(r,0)=pi(rwr0)(1-6) ar 2)定压外边界: p(re,t)二Pe(t0)(1-7) (2)内边界: 1)定产内边界: (t

3、0)(1-8) (t0)(1-9) |. (0rw21kh 2)定流压内边界: P(rw,t)二Pwf 式中,r-径向半径,cm; rw-井底半径,cm; re-边界半径,cm; p-油藏中各点的压力,10-1MPa; pi-初始油藏压力,10-1MPa; pwf-井底流压,10-1MPa; t-时间,s; ?-孔隙度,小数; k-渗透率,(jm2; C-流体的压缩系数,1/MPa; 火流体粘度,mPa 会; h-油层厚度,cm; Q-井的产量,cm3/s; 渗流微分方程(1-4)与初始条件、边界条件一起,构成了一维径向单相流问 题完整的数学模型。通过求解可得在各种不同的内、外边界条件下,地层

4、中各点 的压力分布,以及井底流压 pwf或产量。 2差分方程的建立 为适应一维径向流井底压力变化快、远离井底附近压力变化慢的特点,网格划分采用不等距网格,即井底附近网格划分密一些,远离井底要疏一些。 在此选取等比级数网格,即: 立二立二 a,二二 a,色二色二 a,1|1(2-1) rwri2 于是: 2._3n riarw,2araw,3abarw,%aw(2-2) 这样实现了井底附近网格小,而远离井底处网格压大的问题。 对方程(1-4)左端项进行差分,进行一系列的变换处理,可得: Pi+iPi Pi* 1ddp、.1g1+0.50.5(4每每1-&ri)-50.5(MiAri_i)

5、 ()(G).(2-3) ror(;rrdrr 击击 我们将不等距的 r 坐标转换成了等距离的 x坐标。两种坐标之间的对 应关系如图 1所小。则: ln乜二乜二 lna, rw 1n2.2lnaJU,rw lna=ix ln旦二灰二x1,rw lnrn.nlna,rw lnr=2Ax=x2,I,rw rni ln一二ngx二xn rw (2-4) (2-5) 于是, (2-7) r_.、一 dx1 而ln-:x为方程dx二1的特解,因此数学模型(1-4)的左端项可化为:rwdrir 于是数学模型(2-4)可转换为: i62p-知Cdp 2-2-,、 C?xk0t 将式(2-8)代入上式,得:

6、1爻重 (| rdr )二二 (2-9) (2-10) r2 C?p- r2- x 22x rwie 阳CGp I*- kdt (2-11) 通过上述过程,将不等距的径向坐标 r 转换成了等距离的 x坐标,而且将数 学模型中的微分方程也进行了坐标转换。 卜面用隐式差分格式对转换为等距离 x 式(2-15)即为一维径向流时的差分方程表达式。当 i 和?x确定以后,根据上 式用追赶法解三对角方程矩阵方程(也可直接求解),即可确定任一半径处的压力分布。 3一维径向单相流模拟事例 3.1 模拟条件与要求 已知井径 rw=0.1m,外径 re=250m,流体粘度.=1mPa厚度 h=5m, 渗透率 k=

7、0.05加2,孔隙度?=0.25,综合压缩系数 C=5X10-3MPa-1,原始压力 pi=10MPa,最大模拟时间 tmax=360d,时间步?t=30d,网格数 n=30. 外边界定压 p|r=re=10MPa,内边界定产 Q=15m3/d。求各点网格点在不同时刻的压力分布,并绘图表示 t=90,180,270,360d时各网格点的压力沿径向的分布情况。 左边的微分方程(2-11)进行差分求解。 方程(2-11)的隐式差分方程为: pM-2pT+Ri;.22i,4x威心pn11-p re 永2.wek3t 令 22ix如CAx2 Mi:e- kAt 则式(2-12)为: n-1n11n|1

8、n pi1-(2+Mi)pipN1二-MiR (2-12) (2-13) (2-14) 令 n Zi-2Mi,di-Mipi 则: n-1;n1n|1_ pi1-/Lipipi1-di (2-15) 3.2 系数矩阵的构建 根据 3.1 中给定的条件,可知本事例采用外边界定压,内边界定产的边界条件,该类边界条件一般形式为: p(re,t)=Pe 逸).卜(3-1) (Sr)Lrw-2ffkhJ 下面主要构建在上述边界条件下,方程(2-15)对应于 i=0 到 n 的各个网格所构成的线性代数方程组。 (1)当 i=0 时,即内边界处,首先将内边界条件(r2p)|二半转换为 x坐 r_wZikh

9、标。转换式如下: 0pQ“ 喘“。二而(3-2) 上式的差分方程为: Q -pwf+P1二而小 令黑-ix=do,则方程(3-3)可简化为: 2/jkh -Pwf+Pi二d0 (2)当 i=1到 n-2时,按方程(2-15)列方程。 当 i=n-1 时,由式(2-15)可得: Pn-An.1Pn.1二二 dq-Pe(3-5) 当 i=n时,Pn=Pe已知,因此只需要求第 0 到 n-1 个网格点的压力。 如上所示,列出 i=0,1,?,n-1 各网格节点的方程,所得方程组为: 当 i=0 时:Pwf+P1=do 当 i=1到 n-2时:P 售-%P1+P?;=di 当 1 二口-1时:P.2九

10、.1Pn|1dn.1-Pe 写出矩阵方程的形式,得: 解此三对角矩阵方程,可求得 Pwf,P1,P2,?,Pn-1O 4计算程序框图 一维径向流程序框图如图 2所示。(3-3) (3-4) (3-6) 1 n.2 图2一维径向流程序框图 5模拟结果分析 根据以上推导的计算公式和程序框图,应用 matlab进行编程求解。主要的程序包括主程序Main、求解程序 Solve和追赶法程序 fcatch。其中,主程序 Main主要作用是输入地层、流体参数以及初始和边界条件,设置与模拟时间相关的参数,通过调用 Solve函数,返回一系列的结果,绘制网格划分示意图、 各网格点在不同时刻压力分布图和不同时刻各

11、网格点的压力沿径向的分布图。 Solve函数主要作用是基于一定的边界条件构造系数矩阵,并调用追赶法对压力 矩阵方程进行求解。 为清楚显示网格分布情况,根据 3中给定的条件,绘制的网格分布划分示意 图如图 3所示。 各网格节点在不同时刻的压力分布如图 4所示: 图4各网格点在不同时刻压力分布 由图中看出,随网格编号增加(即离井越来越远),压力下降幅度越小, 格号加 O4050 3 O3050 2 O20O 5 1 图3网格划分示意图 小 网编增 I.5I,4I,3I,2 9999 10,9,876 9999 apMrp 下降的速度也越慢,在外边界处压力保持恒定。这是因为离井越远,压力波 传播到的

12、时间越晚,井的生产对该处的压力影响也就越小 选取 t=90,180,270,360d 共 4个时间节点,观察各网格点的压力 沿径向的分布情况。为更好的展示得到的结果,绘制 4个时间节点处压力等 值线填充图和各网格点压力沿径向分布图,分别如图 5和图 6 所示 图64时间节点各网格点压力沿径向分布图 有以上两图中可以看出,对于图 5,由于压力变化较小,不同时间节点下的 压力分布等值线图相差不大,特别是当时间为 180、270和 360d时,这一点在 图 6 中体现的较为明显, 三种情况下的压力分布曲线几乎重合。 这也说明了生产之初压力下降速t=90d t=360d 9.8 9.6 9.4 9.2 200 100 0 -100 -200 -200 0 200 9.8 9.6 9.4 9.2 图54个时间节点处压力分布等值线填充图 050 100 150r/m 200250 300 度较快, 但由于是定压边界, 当压力波重播到边界, 有充足的能量供给, 压力下降速度逐渐放缓,整个油藏逐步达到稳态。 通过以上图像分析可知,得到的变化趋势符合一维径向定压边界油藏的开发动态规律,这也说明了所编的程序是正确的,模型是合理有效的。1 上述差分格式中,由于在井底附近 ri较小,则1很大,因此易

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论