




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、东城区2011届第一学期期末统一检测文科数学一、本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。1、设全集,集合,则集合(A) (B)(C) (D)2、在复平面内,复数对应的点在(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3、在等差数列中,若,则的值为(A) (B) (C) (D)4、直线过点且与圆交于两点,如果,那么直线的方程为(A) (B)或(C) (D)或5、已知,为不重合的两个平面,直线,那么“”是“”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件6、设,则(A)(B)(C) (
2、D)7、已知斜率为的直线过抛物线的焦点,且与轴相交于点,若(为坐标原点)的面积为,则抛物线方程为(A)(B) (C)或 (D)或8、已知函数的定义域为R,若存在常数,对任意,有,则称为函数给出下列函数:;是定义在R上的奇函数,且满足对一切实数均有其中是函数的序号为(A) (B) (C) (D)二、填空题:本大题共6小题,每小题5分,共30分。9、已知为第二象限角,且,则 10、已知向量,满足:,则与的夹角为; 11、一个几何体的三视图如图所示,则这个几何体的体积为 64正(主)视图2侧(左)视图俯视图2212、如果实数满足条件那么的最大值为 13、设椭圆的两个焦点分别为,过作椭圆长轴的垂线交椭
3、圆于点,若为等腰直角三角形,则椭圆的离心率为 14、已知函数(其中为自然对数的底数,且),若,则实数的取值范围是三、解答题:本大题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。15、(本小题共13分)已知函数()求的值及的最小正周期;()当时,求的最大值和最小值16、(本小题共13分)在公差不为的等差数列中,且,成等比数列.()求数列的通项公式;()设,求数列的前项和公式.17、(本小题共14分)如图,正方形与梯形所在的平面互相垂直,为的中点()求证:平面;()求证:平面平面18、(本小题共13分)已知函数()求函数的单调区间与极值;()若对于任意,恒成立,求实数的取值范围19、
4、(本小题共14分)已知椭圆的长轴长为,且点在椭圆上()求椭圆的方程;()过椭圆右焦点的直线交椭圆于两点,若以为直径的圆过原点,求直线方程20、(本小题共13分)已知集合中的元素都是正整数,且,集合具有性质:对任意的,且,有() 判断集合是否具有性质;() 求证:; () 求证:东城区2010-2011学年度第一学期期末教学统一检测高三数学参考答案 (文科) 一、选择题(本大题共8小题,每小题5分,共40分)1、B 2、C 3、B 4、D 5、A 6、B 7、D 8、C二、填空题(本大题共6小题,每小题5分,共30分)9、 10、; 11、 12、 13、 14、注:两个空的填空题第一个空填对得
5、2分,第二个空填对得3分三、解答题(本大题共6小题,共80分)15、(共13分)解:().6分可知,且函数的最小正周期为7分()由可得,所以,当,即时,有最大值,最大值为;当,即时,有最小值,最小值为13分16、(共13分)解:()设数列的公差为,又,可得, 由,成等比数列得, 即,整理得, 解得或 由,可得,所以 6分()由,可得.所以因为,所以数列是首项为,公比为的等比数列 12分所以的前项和公式为13分17、(共14分)证明:()取中点,连结N在中,分别为的中点,所以,且由已知,所以,且所以四边形为平行四边形所以又因为平面,且平面,所以平面 7分()因为为正方形,所以又因为平面平面,且平
6、面平面又因为平面,所以平面所以 在直角梯形中,可得在中,所以所以平面又因为平面,所以平面平面14分18、(共13分)解:()由,可得令,解得因为当或时,;当时,所以的单调递增区间是和,单调递减区间是又,所以当时,函数有极大值;当时,函数有极小值 6分()由已知对于任意恒成立,所以对于任意恒成立,即 对于任意恒成立.因为,所以(当且仅当时取“=”号)所以的最小值为2 由,得,所以恒成立时,实数的取值范围是13分19、(共14分)解:()由题意:,所求椭圆方程为又点在椭圆上,可得所求椭圆方程为 5分()由()知,所以,椭圆右焦点为因为以为直径的圆过原点,所以若直线的斜率不存在,则直线的方程为直线交椭圆于两点, ,不合题意若直线的斜率存在,设斜率为,则直线的方程为由可得由于直线过椭圆右焦点,可知设,则,所以由,即,可得所以直线方程为 14分20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025直播流量获客:策略与实操指南
- 漏电测试试题题目及答案
- 有趣的冷知识试题及答案
- 广告设计案例分析试题及答案
- 全国甲卷试题及答案英语
- 无线网组建试题及答案
- 2024年纺织品开发流程试题及答案
- 广告设计中的创作灵感来源考察试题及答案
- mri检查技术期末试题及答案
- 2024年广告设计师考试辅导书试题及答案
- 2025年江西金融租赁股份有限公司招聘笔试参考题库含答案解析
- 台达DELTA变频器VFD-EL系列使用说明书和手册(完整中文版)VFD007EL23A
- 湖南省长沙市2024-2025学年高三上学期新高考适应性考试数学试题 含答案
- 课题申报书:“四新”建设背景下教育创新与课程数字化实践研究
- 年加工2万吨再生铝项目可行性研究报告建议书
- 2025年公司各部门管理规章制度(4篇)
- 2025年应急管理部信息研究院招聘高频重点提升(共500题)附带答案详解
- 2025版《VOCs废气处理设施安全检查表》(全)
- 普通话水平测试朗读50篇
- 【MOOC】外国教育史-河南大学 中国大学慕课MOOC答案
- 电气工程中的电力系统设计
评论
0/150
提交评论