《二次函数》复习课件1_第1页
《二次函数》复习课件1_第2页
《二次函数》复习课件1_第3页
《二次函数》复习课件1_第4页
《二次函数》复习课件1_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、退出退出一、定义一、定义二、顶点与对称轴二、顶点与对称轴四、图象位置与四、图象位置与a、b、c、 的的正负关系正负关系一般地,如果一般地,如果 y=ax2+bx+c(a,b,c 是常数,是常数,a0),那么,那么,y叫做叫做x的的二次函数二次函数。三、解析式的求法三、解析式的求法一、定义一、定义二、顶点与对称轴二、顶点与对称轴三、解析式的求法三、解析式的求法四、图象位置与四、图象位置与a、b、c、 的的正负关系正负关系y=ax2+bx+cy=a(x+ )2+ b2a4ac-b24a 对称轴对称轴: x= b2a顶点坐标顶点坐标:(:( , ) b2a4ac-b24a (1)a确定抛物线的开口方

2、向:确定抛物线的开口方向:a0a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00 x=-b2a巩固练习巩固练习(1)二次函数)二次函数y=x2-x-6的图象顶点坐标的图象顶点坐标是是_对称轴是对称轴是_。(2)抛物线抛物线y=-2x2+4x与

3、与x轴的交点坐标轴的交点坐标是是_(3)已知函数)已知函数y=x2-x-4,当函数值,当函数值y随随x的增大而减小时,的增大而减小时,x的取值范围是的取值范围是_(4)二次函数)二次函数y=mx2-3x+2m-m2的图象的图象经过原点,则经过原点,则m= _。12(,-)125 24x=12(0,0)(2,0)x12返回 4. 在同一坐标系内函数在同一坐标系内函数 y=ax2+bx+c 与与y=ax- -b(ab0)的图)的图象正确的是(象正确的是( )xyOAxyOBxyOCxyODDa0a0a0a0a0a0-b0b0b0一、定义一、定义二、顶点与对称轴二、顶点与对称轴三、解析式的求法三、解

4、析式的求法四、图象位置与四、图象位置与a、b、c、 的的正负关系正负关系 解析式解析式使用范使用范围围一般一般式式已知任意三个点顶点顶点式式已知顶点(h,k)及另一点交点交点式式已知与x轴的两个交点及另一个点y=ax2+bx+cy=a(x-h)2+ky=a(x-x1)(x-x2)试一试试一试:根据下列不同的条件,求二次函数的关系式根据下列不同的条件,求二次函数的关系式(1)若图像经过)若图像经过 B(2,10)C(0,-6)三点)三点;)27,21(A(2)若图像的顶点是)若图像的顶点是P(-1,-8)且过点)且过点M(0,-6);(3)若图像经过)若图像经过A(-3,0)B(1,0)和)和C

5、(0,-6)三点)三点;(5)若)若x = -1时,时,y有最小值有最小值-8且过点(且过点(-4,10);27,25(6)若函数图像的顶点为()若函数图像的顶点为(-1,- 8), 图象与图象与x轴的两个轴的两个交点的横坐标为交点的横坐标为x1和和x2,且且 ;412 xx(4)若图像的对称轴为直线)若图像的对称轴为直线x = -1,且过点(,且过点(-3,0)( );642:2xxykey练习二:一运动员推铅球,铅球经过的练习二:一运动员推铅球,铅球经过的路线为如图所示的抛物线。路线为如图所示的抛物线。(1)求铅球所经过的路线的函数解析式)求铅球所经过的路线的函数解析式和自变量取值范围。和

6、自变量取值范围。(2)铅球的落地点离运动员有多远?)铅球的落地点离运动员有多远?y(m)x(m)o(0,1.5)(4,3)例例1: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232例例1: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点)求抛物线开口方向,对称轴和顶点M的坐标。的坐标。(2)设抛物线与y轴

7、交于C点,与x轴交于A、B两点,求C, A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解:(1)a= 0 抛物线的开口向上抛物线的开口向上 y= (x2+2x+1)-2=(x+1)2-2 对称轴对称轴x=-1,顶点坐标,顶点坐标M(-1,-2)121212例例1: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与)设抛物线与y轴交于轴交于C点,与点,与x轴交于轴交于A、B两点,求两点,求C, A,B的坐标。

8、的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解: (2)由由x=0,得,得y= - -抛物线与抛物线与y轴的交点轴的交点C(0,- -) 由由y=0,得,得x2+x- =0 x1=-3 x2=1 与与x轴交点轴交点A(-3,0)B(1,0)32323212例例1: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。(3)画出函数图象的示意图。)画出函数图象

9、的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解0 xy(3)连线连线画对称轴画对称轴x=-1确定顶点确定顶点(-1,-2)(0,-)确定与坐标轴的交点确定与坐标轴的交点及对称点及对称点(-3,0)(1,0)3 2例例1: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。(3)画出函数图象的示意图。(4)求)求MAB的周长及面积。的周长及面积。(5)x为何值时,y随的增大而减小,x

10、为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解0M(-1,-2)C(0,-)A(-3,0)B(1,0)3 2yxD :(4)由对称性可知)由对称性可知MA=MB=22+22=22AB=|x1-x2|=4 MAB的周长的周长=2MA+AB=2 22+4=4 2+4MAB的面积的面积=ABMD=42=41212例例1: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,为何值时,y随的增

11、大而减小,随的增大而减小,x为何值时,为何值时,y有最大有最大 (小)值,这个最大(小)值是多少?(小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解解解0 xx=-1(0,-)(-3,0)(1,0)3 2:(5)(-1,-2)当当x=-1时,时,y有最小值为有最小值为y最小值最小值=-2当当x-1时,时,y随随x的增大的增大而减小而减小;例例1: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大

12、而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,为何值时,y0?1232解解:0(-1,-2)(0,-)(-3,0)(1,0)3 2yx由图象可知由图象可知(6) 当当x1时,时,y 0当当-3 x 1时,时,y 0返回归纳小结:归纳小结: (1)二次函数)二次函数y=ax2+bx+c及抛物线的性质和应用及抛物线的性质和应用 注意:图象的递增性,以及利用图象求自变量注意:图象的递增性,以及利用图象求自变量x或函或函数值数值y的取值范围的取值范围返回 (2)a,b,c,的正负与图象的位置关系的正负与图象的位置关系 注意:图象与轴有两个交点注意:图象与轴有两个交点A(x1,0),),B(x2,0)时)时AB=|x2-x1|= (x1+x2)2+4x1 x2= 这一结论及推导过程。这一结论及推导过程。|a|能力训练能力训练 二次函数的图象如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论