


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、导数及其应用选填题专项训练基础题'、选择题1. 、 /(%)与gO)是定义在R上的两个可导函数,若/(x),g(x)满足/ (x) = g,则/(%)与g(x)满足()A. /(x)=g(x) B. /(x)-g(x)为常数函数 C. f(x)=g(x) = o D. /(x) + g(x)为常数函数2.、函数y二/(兀)在一点的导数值为0是函数)?,二/(兀)在这点取极值的()A充分条件B必要条件C充要条件D必要非充分条件A. (-1,1)以下四图.都是同 哑标系中三次函数及其导函数的图像;其中二定不正确的序号是D.、5、一个物体的运动方程为s = -t + t2其中$的单位是米,/
2、的单位是秒,那么物体在3秒末的瞬吋速度是A. 7米/秒B. 6米/秒c. 5米/秒X .6、函数-八-X的图像大致为()?D. 8米/秒ABC3、函数/(x) = x3 - 3姒+ b(a > 0)的极大值为6,极小值为2,则/(%)的减区间是 7、?过原点作曲线y = er的切线,则切点坐标是切线斜率是B. (0, 1)C. (-1, 0)D. (一 2, T)8、函数,=2/_3%2_12兀+ 5在0, 3上的最大值和最小值分别是 导数及其应用选填题专项训练一一中难题41?已知点P在曲线y = 上,a为曲线在点P处的切线的倾斜角,则a的取值范围是()e +1厂3/r 、TC冗、彳冗3
3、兀、7C、a. A) B.y)c.D. 0,)4 4 22 4 4A. k 5 -3 或-1 5 k 5 1 或 k ? 3C. -2<k<23.对于 XER 恒成立,贝叽A. )< e/(0),/(2014)>e2014/(0)C. / > A(0),/(2014) < 严于(0)2.若函数/=疋12兀在区间伙-1北+ 1)上不是单调函数,则实数k的取值范围(B. - 3 v k V-1 或 1 v k v 3</( 兀)D.不存在这样的实数k已知/(X)是可导的函数,且广 )( 考查特殊函数的导数公式 )B. / > 幼(O),.f (201
4、4) > 严(0)D. / < e/*(0),/(2014) < 严 4/(0)4. 己知两数 /(X) = -X 2 + 41nX ,若存在满足 1 < X() < 3 的实数兀 () ,使得| 山线)=/( 兀) 在点 O() ,/(X() )处的切线与.Wx +my -10 = 0<H,则实数加的取值范围是()135+8)B. ,4,5 匕 0. (-00,4)5、若函数/(x) = X3 +ax2 +bx +c 有极值点兀,X2, K/(Xj) = Xx,则关于 x 的方程 3( f (兀)'+2d f (x)+b=0 的不同实根个数是 ()
5、A. 3B. 4 C. 5D? 66、已知a为常数,/(x) =x(lnx ax)有两个极值点X2 (x( <X2),贝ij ()A. f (xi) >0, f(x2 )>* B. f(X!)<0, f(X2)v |C. f(X1)>O, f (x 2)< | D. f(x 】)0, f(X2)> 7、 我们把形如 y = f(xf (x) 的函数称为幕指函数,幕指函数在求导时,可以利用对数法:在函数解析式两边求对数得Iny = A(x)lnf(x),两边求导数,得"=0d)ln / ?(兀)+卩(工)£契,于是JfMy = y(x
6、)呵0( x) in/(x) + (x)°詈运用此方法可以探求得函数 y =,的 个单调递增区间是 (11 、A. (e,4)B. c + C. (e l,e + l) D. (0,纟)IEE 丿n x&已知/(x) = -Inx,/(x)在x = x处取最大值,以下各式止确的序号为/(xo)vxo/(xo) = xol + x/Uo)兀 0 /(兀 0)V 2 /(无 o) > 2A. B.C.D. 2 9.己知函数f(x) = an(x + )-x,在区间(0,1)内任収两个实数p,q ,且pWq,不等式/(" + 1) 7(9 + 1) p_q->
7、1恒成立,则实数Q的取值范围是()(2,6(B)(6,15)(0 6,+00)(D) 15,十对10.JV2设函数/满足/广(x) + 2妙=J(2) = ?,则x>0,时,(%)()x8四个命大值'无极小值B.冇极小值'无极大值C.既冇极大值乂冇极小值D.既无极大值也无极小值"、给出下列 函教/(%)=nx-2+x在区间(1, e)上存在零点: 若厂(如)=0,则函数y = f (X)在x = xo处取得极值: 若一1,贝ij函数y = log (x2 -2x-m).的值城为R;XB、1个C、2个D、3个 “3=1是“函数在定义域上是奇函数”的充分不必要条件。
8、其中正确的个数()A、 1 + ae导数及其应用选填题专项训练一一基础题答案一、选择题 1? B 2.D3、A 4. C 5. C 6. A.二、填空题 7、(l,e),e 8、5, -15 ; 9、(-00,0)导数及其应用选填题专项训练一一中难题答案CBDD ADBB DDD5. A 解析因为 f (x) =3x 2+2ax + b, 3(f (x) 2+2af (x) +b=0 且 3x2+2ax+b=0 的两根分别为 Xi, x 2,所以 f( X) =Xi 或 f(X)=X2,当Xi是极大值点时,f(XI) =X1, X2为极小值点,且X2>X1,如图所示,可知方程f (x)
9、=X1有两个实根,f(x) =X2 有一个实根,故方程3(f(x)2+2af(x) +b=0共有3个不同实根;当XI是极小值点时,f(Xl)=X1, X2为极大值点,且X2<X,如图所示,可知方程f(x)=x】有两个实根,f (x) =X2有一个实根,故方程3(f (x) 2+2af (x) +b=0共有3个不同实根;综合以上可知,方程3(f(x) 2+2af(x) +b = 0共有3个不同实根.6. D 解析f (x) =ln x (2a 1) =0 In x = 2ax 1,函数y = ln x与函数y = 2ax 1的图像有两个交 点,令 V =ln x, y 2 = 2ax 1,在同一坐标系中作出这两个函数的图像,显然 aWO吋,两个函数图像只有一个 公共点,故a>0,此时当直线的斜率逐渐变大直到直线y = 2ax l与曲线y =ln x相切时,两函数图像均冇两 个不同的公共点,vj =-,故曲线y=lnx上的点(xo, In xo)处的切线方程是y In x =丄(x x。),该直线过XXo点(0, 1),则一 I lnxo= 1,解得xo=l,故过点(0, 1)的曲线y = In x的切线斜率是1,故2a=l,即a =7,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 8.2.5 生物的变异 说课稿-2025-2026学年鲁科版(五四学制)生物八年级下册
- Chapter1 Study tours教学设计-2025-2026学年小学英语6B香港朗文版
- 第三节 DNA通过复制传递遗传信息教学设计-2025-2026学年高中生物浙科版2019必修2 遗传与进化-浙科版2019
- 十六 项脊轩志教学设计-2025-2026学年高中语文高一下册华东师大版
- 2025年中考数学试题分类汇编:圆的有关位置关系(9大考点51题) (第1期)解析版
- 2025年采购与供应链管理岗位职业技能资格知识考试题与答案
- 1.3地球的历史教学设计2023-2024学年高中地理人教版(2019)必修第一册
- 2025年体育学科专业知识教师招聘考试押题卷及答案(一)
- 一年级语文上册 第7单元 课文3 11 项链说课稿 新人教版
- 蓄水池防溺水知识培训课件
- 物业客服管理知识培训课件
- 2025-2026学年湘教版(2024)初中数学八年级上册教学计划及进度表
- GB/T 45763-2025精细陶瓷陶瓷薄板室温弯曲强度试验方法三点弯曲或四点弯曲法
- 【MOOC】理解马克思-南京大学 中国大学慕课MOOC答案
- 夏商周考古课件 第1章 绪论
- GB/T 23723.1-2009起重机安全使用第1部分:总则
- 《汽车发动机检修》课程标准
- GB308-2002滚动轴承钢球
- 夹芯彩钢复合板吊顶施工方案
- 高二物理培优计划
- 初中英语阅读理解100篇
评论
0/150
提交评论