比较线性模型和Probit模型、Logit模型_第1页
比较线性模型和Probit模型、Logit模型_第2页
比较线性模型和Probit模型、Logit模型_第3页
比较线性模型和Probit模型、Logit模型_第4页
比较线性模型和Probit模型、Logit模型_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、研究生考试录取相关因素的实验报告,研究目的通过对南开大学国际经济研究所1999级研究生考试分数及录取情况的研究,引入录取与未录取这一虚拟变量,比较线性概率模型与Probit模型,Logit模型,预测正确率。,模型设定表1,南开大学国际经济研究所 1999级研究生考试分数及录取情况见数据表obsYSCOREobsYSCOREobsYSCORE114013403326702752140135033268027331392360332690273413873703317002725138438033071026761379390328720266713784003287302638137841032

2、874026191376420321750260101371430321760256111362440318770252121362450318780252131361460316790245140359470308800243150358480308810242161356490304820241170356500303830239180355510303840235190354520299850232200354530297860228210353540294870219220350550293880219230349560293890214240349570292900210250348

3、580291910204260347590291920198270347600287930189280344610286940188290339620286950182300338630282960166310338640282970123320336650282330334660278定义变量SCORE :考生考试分数;丫 :考生录取为1未录取为0。1.00.80.6丫0.40.20.0100150200250300350400 450SCORE上图为样本观测值。1. 线性概率模型根据上面资料建立模型Yi = Bi B2 * SCORE i < -i用Eviews得到回归结果如图:De

4、pe ndent Variable: YMethod: Least SquaresDate: 12/10/10 Time: 20:38Sample: 1 97In eluded observati ons: 97VariableCoefficie ntStd. Errort-StatisticProb.C-0.8474070.159663-5.3074760.0000SCORE0.0032970.0005216.3259700.0000R-squared0.296390Mean depe ndent var0.144330Adjusted R-squared0.288983S.D. depen

5、dent var0.353250S.E. of regressi on0.297866Akaike info criteri on0.436060Sum squared resid8.428818Schwarz criteri on0.489147Log likelihood-19.14890F-statistic40.01790Durb in -Watson stat0.359992Prob(F-statistic)0.000000参数估计结果为:Y? -0.847407+0.003297SCORESe=(0.159663 )( 0.000521 )t=(-5.307476 ) ( 6.32

6、5970 )p=(0.0000)(0.0000)预测正确率:Forecast: YFActual: YForecast sample: 1 97In eluded observati ons: 97Root Mean Squared Error0.294780Mean Absolute Error0.233437Mean Absolute Perce ntage Error8.689503Theil In equality Coefficie nt0.475786Bias Proporti on0.000000Varia nee Proporti on0.294987Covaria nee P

7、roporti on0.7050132. Logit 模型Depe ndent Variable: YMethod: ML - Binary Logit (Quadratic hill climbing)Date: 12/10/10 Time: 21:38Sample: 1 97In cluded observati ons: 97Con verge nee achieved after 11 iterati onsCovaria nee matrix computed using sec ond derivativesVariableCoefficie ntStd. Errorz-Stati

8、sticProb.C-243.7362125.5564-1.9412480.0522SCORE0.6794410.3504921.9385360.0526Mean depe ndent var0.144330S.D. dependent var0.353250S.E. of regressi on0.115440Akaike info criteri on0.123553Sum squared resid1.266017Schwarz criteri on0.176640Log likelihood-3.992330Hannan-Quinn criter.0.145019Restr. log

9、likelihood-40.03639Avg. log likelihood-0.041158LR statistic (1 df)72.08812McFadde n R-squared0.900282Probability(LR stat)0.000000Obs with Dep=083Total obs97Obs with Dep=114得Logit模型估计结果如下Pi = F(yi)=丄 243 .7362 .0.6794 Xj )拐点坐标(358.7, 0.5)其中 Y=-243.7362+0.6794X预测正确率Forecast: YFActual: YForecast sample

10、: 1 97In eluded observati ons: 97Root Mean Squared Error0.114244Mean Absolute Error0.025502Mean Absolute Perce ntage Error1.275122Theil In equality Coefficie nt0.153748Bias Proporti on0.000000Varia nee Proporti on0.025338Covaria nee Proporti on0.9746623. Probit 模型Depe ndent Variable: YMethod: ML - B

11、inary Probit (Quadratic hill climbing)Date: 12/10/10 Time: 21:40Sample: 1 97In cluded observati ons: 97Con verge nee achieved after 11 iterati onsCovaria nee matrix computed using sec ond derivativesVariableCoefficie ntStd. Errorz-StatisticProb.C-144.456070.19809-2.0578330.0396SCORE0.4028680.1961862

12、.0535040.0400Mean depe ndent var0.144330S.D. dependent var0.353250S.E. of regressi on0.116277Akaike info criteri on0.122406Sum squared resid1.284441Schwarz criteri on0.175493Log likelihood-3.936702Hannan-Quinn criter.0.143872Restr. log likelihood-40.03639Avg. log likelihood-0.040585LR statistic (1 d

13、f)72.19938McFadde n R-squared0.901672Probability(LR stat)0.000000Obs with Dep=083Total obs97Obs with Dep=114Probit模型最终估计结果是pi = F(yi) = F (-144.456 + 0.4029 Xi)拐点坐标(358.5, 0.5)预测正确率Forecast: YFActual: YForecast sample: 1 97In eluded observati ons: 97Root Mean Squared Error0.115072Mean Absolute Error0.025387Mean Absolute Perce ntage Error1.216791Theil In equality Coefficie nt0.154476Bias Proporti on0.000084Varia nee Proporti on0.020837Covaria nee Proporti on0.979080预测正确率结论:线性概率模型 RMSE=0.294780 MAE=0.233437 MAPE=8.689503 Logit模型 RMSE=0.114244 MAE=0.025502 MAPE=1.275122Probit模型 RMSE=0.11

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论