第14讲直线圆的位置关系_第1页
第14讲直线圆的位置关系_第2页
第14讲直线圆的位置关系_第3页
第14讲直线圆的位置关系_第4页
第14讲直线圆的位置关系_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档普通高中课程标准实验教科书一数学人教版高三新数学第一轮复习教案(讲座14) 一直线、的位置关系精品文档一.课标要求:1 .能用解方程组的方法求两直线的交点坐标;2 .探索并掌:握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离:3 .能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系:4 .能用直线和圆的方程解决一些简单的问题;5 .在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。二.命题走向本讲考察重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系(特别是弦长问题),此类问题难度属于中等,一般以选择题的形式出现,有时在解析几何中

2、也会出现大题,多考察其几何图形的性质或方程知识。预测2007年对本讲的考察是:(1)一个选择题或一个填空题,解答题多与其它知识联合考察;(2)热点问题是直线的位置关系、借助数形结合的思想处理直线与圆的位置关系,注重此种思想方法的考察也会是一个命题的方向;(3)本讲的内容考察了学生的理解能力、逻辑思维能力、运算能力。三.要点精讲1 .直线1】与直线12的的平行与垂直(1)若h,b均存在斜率且不重合:h/42U>ki=k?;hJLb。卜水产一1。(2)若L:Ax+耳y+G=0,12:A»x+B2y+C2=0若Al、a、Bl、B?都不为零。1必2。丸二丝wJ;a>b,attP&

3、lt;0AiA)+BiB2=0:h与b相交o旦;AB)h与b重合03=兔=J;A,B、C./注意:若A或B2中含有字母,应注意讨论字母=0与工0的情况。两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。2 .距离精品文档(1)两点间距离:若A(X1,y1),B(X2,y2),则|AB|=J(x?看产+(y?y>特别地:ABx轴,WJ|AB|=|Xi-x2hABy轴,则|AB|=|乂一y?|。(2)平行线间距离:若11:Ax+By+C=0,L:Ax+By+C?=0,o注意点:x, y对应项系数应相等。IC,-CJ则:d='121>/a2+b2(

4、3)点到直线的距离:P(x0,y0),1:Ax+By+C=0,则P到1的距离为:|Ax.+Byo+C|+B23 .直线Ax+By+C=0与圆(xa)?+(y-b)2=r2的位置关系有三种|Aa+Bb+C|.一(1)若d=-,d>r。相禺<=><0;a/a2+B2(2) d=io相切u>A=0;(3) dviu>相交。A>0。还可以利用直线方程与圆的方程联立方程组Ax4-By+C=0);求解,通x+y-+Dx+Ey+F=0过解的个数来判断:(1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交;(2)当方程组有且只有1个公共解时(直线与圆只有1

5、个交点),直线与圆相切:(3)当方程组没有公共解时(直线与圆没有交点),直线与圆相离;即:将直线方程代入圆的方程得到一元二次方程,设它的判别式为A,圆心C到直线1的距离为d,则直线与圆的位置关系满足以下关系:相切。d=rU>A=0:相交。dvr。A>0;相离。d>rOA<0o4 .两圆位置关系的判定方法设两圆圆心分别为Oi,O2»半径分别为口,巧,pO?=dod>1;+弓o外离=4条公切线;d=I+勾o外切=3条公切线:-r2|<dvq+r2<=>相交。2条公切线;d=卜1-以O内切01条公切线:0<d<|rj-r2|U&g

6、t;内含。无公切线:外离相交判断两个圆的位置关系也可以通过联立方程组判断公共解的个数来解决。四.典例解析题型1:直线间的位置关系例1.(1)(2006北京11)若三点A(2,2),B(a,0),C(0,b)(abHO)共线,则,g的值等于。ab(2)(2006上海文11)已知两条直线L:ax+3y-3=012:4x+6y-l=0.若1J/1?,则a=解析:(1)答案:;(2)2o2精品文档点评:(1)三点共线问题借助斜率来解决,只需保证(2)对直线平行关系的判断在一般式方程中注意系数为零的情况。例2.(1)(2006福建文,1)已知两条直线y=ax-2和y=(a+2)x+l互相垂直,则a等于(

7、)A.2B.1C.0D.-1(2) (2006安徽理,7)若曲线y=x,的一条切线1与直线x+4y-8=0垂直,则1的方程为()A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0解析:(1)答案为D;(2)与直线x+4y-8=0垂直的直线1为4xy+m=0,即y=x”在某一点的导数为4,而y=4x3,所以y=x,在(1,1)处导数为4,此点的切线为4x-v-3=0,故选A。点评:直线间的垂直关系要充分利用好斜率互为负倒数的关系,同时兼顾到斜率为零和不存在两种情况。题型2:距离问题例3.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是()A.X-y=0B.

8、x+y=0C.冈一y=0D.|x|y|=0解析:设到坐标轴距离相等的点为(x,y)冈=闻冈一|4=0。答案:D点评:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径例4.(2002全国文,21)已知点P到两个定点M(1,0)N(1,0)距离的比为3,点N到直线PM的距离为1.求直线PN的方程。解析:设点P的坐标为(x,y),由题设有W=|PN|即J(x+iy+/=V2-J(x-1)2+/。整理得x2+y2-6x+l=O因为点N到PM的距离为1,|MN|=2,精品文档所以NPMN=30°,直线PM的斜率为土3直线PM的方程为y=

9、77;(x+1)将式代入式整理得x2-4x+1=0o解得x=2+C,x=2>/3o代入式得点P的坐标为(2+,1+V3)或(2y/i,-1+a/3);(2+V3,1V3)或(2yfi,13)o直线PN的方程为y=x1或y=x+lo点评:该题全面综合了解析儿何、平面儿何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想。该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度。题型3:直线与圆的位置关

10、系例5.(1)(2006安徽文,7)直线X+y=l与圆*2+72-22丫=0(2>0)没有公共点,则a的取值范围是()A.(0,y/21)B.(V21,y/2+1)C.(y/21,y/24-1)D.(0,-+1)(2) (2006江苏理,2)圆(x-l)?+(y+石/=1的切线方程中有一个是()A.Xy=0B.x+y=0C.x=0D.y=0解析:(1)解析:由圆x2+y2-2ay=0(a>0)的圆心(0,a)到直线x+y=l大于a,且a>0,选A。点评:该题考察了直线与圆位置关系的判定。(2)直线ax+by=0与5-1)2+(丫+6)2=1相切,则包坐包=1,由排除法,V2选

11、C,本题也可数形结合,画出他们的图象自然会选C,用图象法解最省事。点评:本题主要考查圆的切线的求法,直线与圆相切的充要条件是圆心到直线的距离等于半径。直线与圆相切可以有两种方式转化几何条件:圆心到直线的距离等于半径(2)代数条件:直线与圆的方程组成方程组有唯一解,从而转化成判别式等于零来解。例6.(2006江西理,16)己知圆M:(x+cosO)2+(ysin6)2=1,直线1:y=kx,精品文档Aaob是等边二角形,兀N AOB=,3故选c。精品文档下面四个命题:(A)对任意实数k与6,直线1和圆M相切:(B)对任意实数k与仇直线1和圆M有公共点;(C)对任意实数必存在实数k,使得直线1与和

12、圆M相切;(D)对任意实数k,必存在实数仇使得直线1与司圆M相切。其中真命题的代号是(写出所有真命题的代号)解析:圆心坐标为(一cos。,sinO)d=|kcos0sin0_Jl+ksin(0+(p)Vl+k2>/l+k2=|sin(0+(p)<1故选(B)(D)点评:该题复合了三角参数的形式,考察了分类讨论的思想。题型4:直线与圆综合问题例7.(1999全国,9)宜线JJx+y-2JJ=O截圆/+=4得的劣弧所对的圆心角为()7T兀A.B64解析:如图所示:由百x+y-2百=0x2+y2=4消y得:X23x+2=0,Xi=2,X2=lo/.A(2,0),B(1,Ji)|AB|=(

13、2I)2+(0V3)2=2又|OB|=|OA|=2,点评:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性。如果注意到直线AB的倾斜角为120°,则等腰OAB的底角为60°.因此NAOB=60°.更加体现出平面几何的意义。例8.(2006全国2,16)过点(1,理)的直线1将圆仪-2)2+/=4分成两段弧,当劣弧所对的圆心角最小时,直线1的斜率k=o精品文档精品文档解析:过点Q")的直线1将圆(、-2)2+72=4分成两段弧,当劣弧所对的留心角k=最小时,直线1的斜率2解析(数形结合)由图形

14、可知点A。,'"在圆(x-zy+y2=4的内部,圆心为0(2。要使1_1_>/2Kj-产得劣弧所对的圆心角最小,只能是直线I,OA,所以Ka-V22。点评:本题主要考察数形结合思想和两条相互垂直的直线的斜率的关系,难度中等。题型5:对称问题例9.(89年高考题)一束光线1自A(-3,3)发出,射到x轴上,被x轴反射到OC:$+/一4乂一4丫+7=0上。(I)求反射线通过圆心C时,光线1的方程;(II)求在x轴上,反射点M的范围.解法一:己知圆的标准方程是(x-2)2+(y-2)2=l,它关于x轴的对称圆的方程是(x-2+(y+2)2=l。设光线L所在的直线的方程是y-3

15、=k(x+3)(其中斜率k待定),由题设知对称圆的圆心C'(2,-2)到这条直线的距离等于1,即d:k+5'。整理得12k425k+12=0,解得k=或k=一VlTk74444。故所求直线方程是y3=(x+3),或y3=(x+3),即3x+4y+3=0或4x+3y+3=0。解法二:已知圆的标准方程是(x2)2+(y2)2=1,设交线L所在的直线的方程是精品文档精品文档y3=k(x+3)(其中斜率k待定),由题意知k#0,于是L的反射点的坐标是(-3Q+k),k0),因为光线的入射角等于反射角,所以反射光线L'所在直线的方程为y=一k(x+3(Uk),即"kx+

16、3(l+k)=0。这条直线应与已知圆相切,故圆心到直线的距离为1,k即d:k+5=。以下同解法一。点评:圆复合直线的对称问题,解题思路兼顾到直线对称性问题,重点关注对称圆的几何要素,特别是圆心坐标和圆的半径。例10.已知函数ffxkx2-1(x21)的图像为Cp曲线C?与G关于直线尸x对称。(1)求曲线C2的方程产g(x);(2)设函数产g(x)的定义域为M,X1,X2M,且X1WX2,求证|g(xi)g(X2)|v|x1一x?|;(3)设A、B为曲线C2上任意不同两点,证明直线AB与直线kx必相交。解析:(1)曲线Ci和C2关于直线产x对称,则虱x)为f(x)的反函数。*.'y=x2

17、1,x2=y+l,又x21,,x=Jy+1,则曲线C2的方程为g(x)=Jx+1(x20)o(2)设xi,x2M,且X1WX2,则XxWO。又x120,X220,.|g(Xi)-g(X2)|=|J.+1-Jx,+l|=L;W2v|xX2|。(3)设A(X1,y。、B(x2,y2)为曲线C2上任意不同两点,x,x2M,且为工乂?,由知,5五*-x2IXi-x2I直线AB与直线y=x必相交。直线AB的斜率火阳|工1,又直线尸x的斜率为1,点评:曲线对称问题应从方程与曲线的对应关系入手来处理,最终转化为点的坐标之间的对应关系。题型6:轨迹问题例11.(2005山东理,22)已知动圆过定点2且与直线x

18、=-2相切,其中p>o。(I)求动圆圆心C的轨迹的方程;直线OA和OB的倾斜角分别为a和夕,当。,夕变化(II)设A、B是轨迹C上异于原点0的两个不同点,精品文档精品文档且a+夕为定值夕(0夕不)时,证明直线AB恒过定点,并求出该定点的坐标。解析:(I)如图,设M为动圆圆心,R,0为记为F,过点M作直线x=E的12)2垂线,垂足为N,由题意知:|MFk|MN|即动点M到定点F与定直线*=-的距离相等,由抛物线的定义知,点M的轨迹为抛物线,其中为焦点,x=-R为准<2)2线,所以轨迹方程为VmZPXR。);(11)如图,设7%,),:6(%,丫2),由题意得x1Hx2(否则2+/=乃

19、)且Xp%工0)2所以直线AB的斜率存在,设其方程为y=kx+b,显然*=治,占=,,将y主回与y2=2px(P>0)联立消去x,得kj-2p-y2p=由韦达定理知2p2pb、y1+y?=KK当夕二g时,即。+夕=1时,13111向14=1所以”.&=1,%-yy2=0,爷一%=0所以yy?=4p2由知:苦=4p2所以。因此直线AB的方程可表示为y=kx+2Pk,即k(x+2P)-y=0,所以直线AB恒过定点(-2p,0)。(2)当。工2时,由a+/=d,得tan。=tan。+上型”皿=型山,一tanatan夕YiY?-4p"将式代入上式整理化简可得:tan)二,2P,

20、所以b=2P-+2pk,b-2pktan,此时,直线AB的方程可表示为y=心且-+2pk即ta,n精品文档精品文档精品文档k(x+2p)- y-2ptand9n=0,所以直线AB恒过定点-2p.-ktan)所以由(1)(2)知,当夕时,直线AB恒过定点(-2p,0),当夕工、时直线AB?nA恒过定点点评:该题是圆与圆锥曲线交汇题目,考察了矶迹问题,属于难度较大的综合题目。例12.(2005江苏,19)如图,圆5与圆。2的半径都是1,OQ2=4.过动点P分别作圆。2、圆。2的切线PMPl(M,N分别为切点),使得PM=V2PN.试建立适当的坐标系,并求动点P的轨迹方程。解析:以的中点O为原点,。

21、1。2所在直线为x轴,建立如图所示的平面直角坐标系,则。1(-2,0),O2(2,0)o由已知PM=JIPN,PM2=2PN2o因为两圆半径均为1,所以PO;-1=2(PO:-1)。设P(x,y),贝ij(x+2)2+y2-l=2(x-2)2+y2-1,即(x-6)2+V=33(或x2+y2-12x+3=0)。点评:本小题主要考查求轨迹方程的方法及基本运算能力。题型7:课标创新题例13.已知实数X、丫满足(乂一2>+(丫-1)2=1,求z解析:3里表示过点A(0,1)和圆X(x2>+(yl)2=1上的动点(x,y)的直线的斜率。如下图,当且仅当直线与圆相切时,直线的斜率分别取得最大

22、值和最小值。设切线方程为y=kx1,即kxy1=0,则|2k-2|4±V7/=1,解得k=VPTI3因此,Zmax4+V74-V7,z碗=3mm3点评:直线知识是解析几何的基础知识,灵活运用直线知识解题具有构思巧妙、直观性强等特点,对启迪思维大有裨益。下面举例说明其在最值问题中的巧妙运用。例14.设双曲线的两支分别为,正三角形PQR的三顶点位于此双曲线上。若在上,Q、R在上,求顶点Q、R的坐标。分析:正三角形PQR中,有,则以为圆心,为半径的圆与双曲线交于R、Q两点。根据两曲线方程可求出交点Q、R坐标。解析:设以P为圆心,为半径的圆的方程为:,由得:。(其中,可令进行换元解之)设Q、

23、R两点的坐标分别为,则。即,同理可得:,且因为aPCJR是正三角形,则,即,得。代入方程,即。由方程组,得:或,所以,所求Q、R的坐标分别为点评:圆是最简单的二次曲线,它在解析几何及其它数学分支中都有广泛的应用。对一些数学问题,若能作一个辅助圆,可以沟通题设与结论之间的关系,从而使问题得解,起到铺路搭桥的作用。五.思维总结1.关于直线对称问题:(1)关于1:Ax+By+C=0对称问题:不论点,直线与曲线关于1对称问题总可以转化为点关于1对称问题,因为对称是由平分与垂直两部分组成,如求P(沏,y。)关于1:Ax+By+C=0对称点Q(Xi,力),有.=-4(1)与人%+.Xq-XjB2+b%+“

24、+c=0o2(2)解出xi与力;若求Ci:曲线f(x,y)=0(包括直线)关于1:Ax+By精品文档+C1=0对称的曲线C2,由上面的(1)、(2)中求出沏=gi(X1,力)与yo=g2(沟,yi),然后代入Ci:fgi(x,y】),g2(x2,y2)=0,就得到关于1对称的曲线C?方程:fgi(x,y),g2(x,y)=0o(3)若1:Ax+By+C=0中的x,y项系数|A|=1,|B|=1.就可以用直接代入解之,尤其是选择填空题。如曲线C:y2=4x2关于1:xy4=0对称的曲线b的方程为:(x-4)2=4(y+4)-2.即y用x4代,x用y+4代,这样就比较简单了。(4)解有关入射光线与反射光线问题就可以用对称问题来解决。点与圆位置关系:P(xo,yo)和圆C:(xa)2+(yb)2=r2o点P在圆C外有(xo-a)2+(y0-b)2>r2;点P在圆上:(xo-a)2+(y0-b)2=r;点P在圆内:(xoa)2+(yob)?<r2o3 .直线与圆的位置关系:1:£(x,y)=0.圆C:&#

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论