固体物理总复习资料及答案.._第1页
固体物理总复习资料及答案.._第2页
免费预览已结束,剩余22页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 / 20固体物理总复习题一、填空题1原胞是 _的晶格重复单元。对于布拉伐格子,原胞只包含_ 个原子。2在三维晶格中,对一定的波矢 q,有_ 支声学波,_ 支光学波。3电子在三维周期性晶格中波函数方程的解具有 _形式,式中_在晶格平移下保持不变。4如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为_;能带的表示有_ 、_、_ 三种图式。5按结构划分,晶体可分为 _大晶系,共 _ 布喇菲格子。6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为_ 格子,由若干个布喇菲格子相套而成的格子,叫做 _ 格子。其原胞中有_ 以上的原子。7._电子占据了一个能带中的所有的

2、状态,称该能带为 _;没有任何电子占据的能带,称为 _ ;导带以下的第一满带,或者最上面的一个满带称为 _ ;最下面的一个空带称为 _;两个能带之间,不允许存在的能级宽度,称为_。8.基本对称操作包括_,_,_ 三种操作。9.包含一个n重转轴和n个垂直的二重轴的点群叫 _。10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为_。11.具有晶格周期性势场中的电子,其波动方程为_ 。12.在自由电子近似的模型中, _ 随位置变化小,当作_来处理。13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作_处理。这是晶体中描述电子

3、状态2 / 20的_模型。14.固体可分015.典型的晶格结构具有简立方结构,_ , _ , _ 四种结构。16.在自由电子模型中,由于周期势场的微扰,能量函数将在K _处断开,能量的突变为 _。17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电子共有化运动的轨道称为 _,表达式为_ 。18爱因斯坦模型建立的基础是认为所有的格波都以相同的 _ 振动,忽略了频率间的差别,没有考虑 _的色散关系。19._固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在_即存在于_。20._晶体的五种典型的结合形式是 _、_、_ 、21._两种不同金属接触后,费米能级高的带 _ 电,对

4、导电有贡献的是_的电子。22固体能带论的三个基本假设是: _ 、_ 、_ 。23.费米能量与_ 和_因素有关。二、名词解释1声子;2.;布拉伐格子;3.布里渊散射;4.能带理论的基本假设.5.费米能;6.晶体的晶面;7.喇曼散射;8.近自由电子近似。9晶体;10.布里渊散射;11.晶格;12.喇曼散射;三、简述题3 / 201.试说明在范德瓦尔斯结合、金属性结合、离子性结合和共价结合中,哪 一种或哪几种结合最可能形成绝缘体、导体和半导体。2.什么是声子?声子与光子有什么相似之处和不同之处?3什么是德拜温度?它有什么物理意义?4.试叙述原子能级与能带之间的对应关系。5简述Bloch定理,解释简约

5、波矢k的物理意义,并阐述其取值原则。6.试说明晶体结合的基本类型及其特点?7.共价结合中为什么有”饱和性”和”方向性”?8.什么是晶体热容的爱因斯坦模型和德拜模型?比较其主要结果。9.什么是晶体振动光学支和声学支格波?它们有什么本质上的区别?10.近自由电子模型与紧束缚模型各有何特点?它们有相同之处?11.金属晶体的结合力是什么? 一般金属晶体具有何种结构,最大配位数为多少?12.德拜模型在低温下理论结果与实验数据符合相对较好但是仍存在偏差,其产生偏差的根源是什么?13.原子间的排斥作用取决于什么原因?14.在能带顶,电子的有效质量m*为什么为负值?试解释其物理意义。15试述固体物理学原胞和结

6、晶学原胞的相似点和区别?16.根据结合力的不同,晶体可分为几种类型其各自的结合力分别是什么?17.爱因斯坦模型在低温下理论结果与实验数据存在偏差的根源是什么?18.什么是“空穴”?简述空穴的属性。四、推导题1.对一维简单格子,按德拜模型,求出晶格热容,并讨论高、低温极限。2.对二维简单格子,按德拜模型,求出晶格热容,并讨论高、低温极限。3.推导一维单原子链的色散关系4.推导一维双原子链的色散关系五、计算题4 / 201已知铝为三价金属,原子量为27,密度为2.7g/cm3,金属铝在T=0 K下的 费米波矢、费米能和费米速度。2已知电子在周期场中的势能为U (x) m2b2(x na)2,当na

7、 b x na b时2 U (x)0,当(n 1)a b x na b时其中:a 4b, 为常数。(1)画出势能曲线,并求出其平均值;5 / 20(2)用近自由电子模型求出此晶体的第1及第2个禁带宽度。3用紧束缚模型,试求解(1) 面心立方点阵s态电子的紧束缚能带;(2)证明在k=0附近等能面遊似为球形面,并计算有效质量m*.其中:Es(k)EsCsJ e中的 E:t,cs,j均为已知,且在k=oRn111 -(-kxa)22 22)相应声子的能量 Emax、Emin和 Emax;3)如果用电磁波激发光学波,要激发max的声子所用的电磁波波长在什么波段?5.已知半导体GaAs具有闪锌矿结构,G

8、a和As两原子的最近距离d=2.45X10-10m。试求:(1)晶格常数;(2)固体物理学原胞基矢和倒格子基矢;密勒指数为(110)晶面族的面间距;密勒指数为(110)和(111)晶面法向方向间的夹角。(20分)式中a是晶格常数,m是电子的质量,求:(1)能带宽度(E EmaxEmin);(2)电子的平均速度。7.利用紧束缚方法处理体心立方晶体中S态电子的能带,求出:(1)S态电子的能带 E k(2) 求出能带顶和能带底处的电子的有效质量。六、证明题s1附近时,即ka1时,coskxa24在一维复式格子中,如果 m275 1.67 10 kg,15N m,计算:1)光学波频率的最大值max和最

9、小值声学波频率的最大值A .max;6.已知一维晶格中电子的能带可写成2ma 8cos kacos2ka86 / 201.试证明倒格子原胞的体积为(2 )3/Vc,其中 Vc为正格子原胞的体积。2.证明:倒格子矢量 G hQ h?b2h)3b3垂直于密勒指数为(hh?)的晶面 系。3.试证明体心立方格子和面心立方格子互为正倒格子。七、说明题1.原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力, 试分析说明离子性、共价性、金属性和范德瓦耳斯性结合力的特点。2.布洛赫电子论作了哪些基本近似?它与金属自由电子论相比有哪些改 进?固体物理总复习题答案一、填空题1最小;1 2.3;3n3

10、 3.k(r) eikruk(r); uk(r)4禁带(带隙); 扩展能区图式法;简约布里渊区图式法;周期性能区图式法5.7;14 6布 喇菲;复式;两个7.满带;空带;价带;导带;带隙8.平移;旋转;反 演29.双面群10.简正振动11.2V(r) (r) E (r)12.周期势2m场;微扰13.微扰;紧束缚14.晶体;非晶体;准晶体15.体心立方;面心立 方;六角密排16.K= -n;2Vn17.原子轨道线性组合法;a(r)ami(r Rm) 18.频率;格波m19.顶点;面心、体心;20.离子结合;共价结合;金属结合;范德瓦尔斯结 合;氢键结合21正;费米面附近22.绝热近似;单电子近似

11、;周期场近似23.电子密度;温度二、名词解释1晶格振动中格波的能量量子。每个振动模式的能量均以为单位,能量递增为的整数倍一一声子的能量,一个格波就是一个振动模式,对应一种声子。2.由 l1a1l2a213a3确定的空间格子。3当光与声学波相互作用,散射光的频率移动很小,大约在 1073 1010赫,称为布里渊散射。7 / 204.(1)绝热近似:将固体分开为电子系统及离子实系统的一种近似方法;(2)单电子近似(自洽场近似):利用哈特里 一一福克方法将多电子问题归结为单 电子问题;(3)周期场近似:假定单电子势场具有与晶格同样的平移对称性。5.电子按泡利不相容原理,能量从低至高填充,所达到的最高

12、能级。6在布拉伐格子中作一族平行的平面,这些相互平行、等间距的平面可以将所有的格点包括无遗,这些相互平行的平面称为晶体的晶面。7.当光与光学波相互作用,频率移动大约在 3 10103 1013赫,称为喇曼散 射。8假定周期场的起伏比较小,作为零级近似,可以用势场的平均值 V 代替 V(x), 把周期起伏 V(x) V 做为微扰来处理。9.晶体是由完全相同的原子、分子或原子团在空间有规则地周期性排列构成的固体材料。10.当光与声学波相互作用,散射光的频率移动很小,大约在1073 1010赫,称为布里渊散射。11.晶体中的原子是规则排列的,用几组平行直线连接晶体中原子形成的网络, 称为晶格。12.

13、当光与光学波相互作用, 频率移动大约在 3 10103 1013赫,称为喇曼散射。三、简述题1.试说明在范德瓦尔斯结合、金属性结合、离子性结合和共价结合中,哪一种 或哪几种结合最可能形成绝缘体、导体和半导体。答:离子晶体主要依靠正负离子之间的静电库仑力而结合,结合力较强,结构甚为稳定,结合能较大,因此,导电性能差,这种结合可能形成半导体和绝缘 体。共价结合的晶体为原子晶体,是由两原子之间一对自旋相反的共有化电 子形成的,其结合力较强,导电性能差,这种结合可能形成半导体和绝缘体。 金属性结合的晶体,原子失去价电子而成为离子实,价电子为全体离子实所 共有,金属性结合就是价电子与离子实之间的相互作用

14、而形成的,结合能较小,易形成导体。范德瓦尔斯结合的晶体为分子晶体,这种结合是一种弱的 结合,电离能大,易形成绝缘体。8 / 202什么是声子?声子与光子有什么相似之处和不同之处?答:晶格振动的能量是量子化的,把晶格振动能量的量子称为声子。声子与光子相类似,凡是应用到光子上的理论,几乎都可以应用到声子上,相同 之处是它们都是波色子,碰撞过程中能够被产生、或被消灭,能量的交换 是一份一份的,即能量是量子化的。不同之处是声子只代表振动的机械状 态,而不具有动量。光子可以在真空中传播,而声子只能在介质中传播。3什么是德拜温度?它有什么物理意义?答:德拜弹性波模型的截止频率m按m关系式换算得到的温度D称

15、为德kB拜温度。热容量的特征完全由德拜温度确定,它近似地代表经典比热理论 适用的高温范围同低温适用的低温范围的分界温度。可以粗略地指示出晶 格振动频率的数量级。4.试叙述原子能级与能带之间的对应关系。答:原子能级与能带之间存在着两种对应关系,一是简单的一一对应,原子的 各不同能级在固体中将产生一系列相应的能带, 低能级的能带较窄,高能级 的能带较宽。二是在形成晶体的过程中,不同原子态之间有可能相互混和,使对应关系变的比较复杂,可认为主要是由几个能级相近的原子态相互结合 而形成能带,能带发生了明显的重叠。5.简述Bloch定理,解释简约波矢k的物理意义,并阐述其取值原则。答:在晶体周期性势场中运

16、动的电子的波函数是按晶格周期调幅的平面波,即电子的波函数具有如下形式k(r) eikrk()- *k(r) k(r Rn)其中k为电子的波矢,Rn为格矢,上述理论称为布洛赫定理。平移算符和能量算符是对易算符,具有相同的本征态,为了使平移算符在 波矢k的某个范围内,一个本征值对应于一个波函数,我们把波矢限制在k,-范围内,这一区域称为简约布里渊区。在此范围内的波矢,我们2 2称为简约波矢。6.试说明晶体结合的基本类型及其特点?答:晶体中的原子之所以能够结合成具有一定几何结构的稳定晶体,是由于原子之间存在着结合力,而这种结合力与原子的结构有关,不同类型的原子之间具有不同性质的结合力,由于结合力的性

17、质不同,晶体会具有不同 类型的结合。一般晶体的结合可以概括为离子性结合、共价结合、金属性 结合和范德瓦尔斯结合四种基本形式。 离子晶体的典型晶格中, 正、负离 子相间排列, 作用力的总效果为库仑引力,9 / 20具有结构很稳定、 导电性能差、 熔点高、硬度高、膨胀系数小的特点;共价结合的晶体是一对近邻原子相 互靠近,波函数交叠,形成共价键,具有饱和性和方向性;金属性结合是 共有化的价电子与离子实之间的价键结合,结构密排,具有熔点高、硬度 高、导电、导热性能好、无饱和性和方向性等特点;范德瓦尔斯结合产生 在原来稳定电子结构的原子或分子之间,结合后仍保持原来的电子结构, 具有结合力小、熔 点很低、

18、硬度很小的特点。7共价结合中为什么有”饱和性”和”方向性”?答:设N为一个原子的价电子数目,对于WA,VA,WA,VDA族元素,价电子 壳层一共有8个量子态,最多能接纳(8-N)个电子,形成(8-N)个共价键。 这就是共价结合的“饱和性”。共价键的形成只能在特定的方向上,这些 方向是配对电子波函数的对称轴方向,在这个方向上交迭的电子云密度最 大。这就是共价结合的“方向性”。8什么是晶体热容的爱因斯坦模型和德拜模型?比较其主要结果。答: 爱因斯坦模型是假设晶体中的所有原子都以相同的频率0,作相互独 立的振动。 德拜模型是把晶体看作各向同性的连续介质, 格波视为弹性波, 色散关系为直线。 爱因斯坦

19、模型忽略了各格波的频率差别, 假设过于简单, 理论值的关系与实验值不符。德拜模型在低温时,热容决定于最低频率的 振动,理论值与实验值相符。9什么是晶体振动光学支和声学支格波?它们有什么本质上的区别? 答:在一维双原子的简单复式晶格中,求解原子的运动方程。对应于每一个q值,都有频率 和 的两类振动,且,对应于 的格波称为光学分支的格波。对应于 的格波称为声学分支的格波。对于光学分支的格波,相邻两不同原子的振动方向相反。而对于声学分 支的格波,相邻两原子的振动方向相一致,且在长波情况下,声学分支的格 波与弹性波相一致。10近自由电子模型与紧束缚模型各有何特点?它们有相同之处? 解:所谓近自由电子模

20、型就是认为电子接近于自由电子状态的情况,而紧束 缚模型则认为电子在一个原子附近时, 将主要受到该原子场的作用, 把其它原 子场的作用看成微扰作用。 这两种模型的相同之处是:选取一个适当的具有正 交性和完备性的布洛赫波形式的函数集, 然后将电子的波函数在所选取的函数 集中展开, 其展开式中有一组特定的展开系数, 将展开后的电子的波函数代入 薛定谔方程, 利用函数集中各基函数间的正交性, 可以得到一组各展开系数满 足的久期方程。 这个久期方程组是一组齐次方程组, 由齐次方程组有解条件可求出电子能量的本征值,由此便揭示出了系统中电子的能带结构。11.答:金属晶体的结合力为原子实与电子云之间的静电库仑

21、力,其一般具有面 心立方结构及六角密积结构,配位数为12。12.答:它忽略了晶体的各向异性;忽略了光学波和高频声学波对热容的贡献,光学波和高频声学波是色散波,它们的关系式比弹性波的要复杂的多。13.答:两部分原因:10 / 20带正电荷的原子核之间的库仑排斥力;原子或正负离子 的闭合电子壳层相互交叠时,由泡利不相容原理而产生的排斥力。14.答: 晶体中的电子除受外场力,还和晶格相互作用,设外场力为F,晶格对 电子的作用力为 Fi,电子的加速度 a 丄 F Fi,Fi的具体形式难以得知,m为了不显含 Fi,则只有 a 丄,晶格作用越小,有效质量与真实质量相差越小,m当电子的波矢落在布里渊区边界上

22、时,与布里渊区边界平行的晶面族对电子散射 作用最强烈。使得加速度与外场力的方向相反,有效质量为负。15.答:固体物理学原胞是只考虑周期性的最小的重复单元,而晶胞是同时计及周期性与对称性的尽可能小的重复单元。两者都体现了晶体结构的周期性,但 是结晶学原胞还要考虑到对称性,所以其体积往往是固体物理学原胞的几倍。 固 体物理学原胞原子都在顶点,而结晶学原胞原子可以在顶点也可以在面心、 体心 即存在于原胞内部。16.答:晶体根据结合力不同分为五种晶体类型。离子晶体(正负离子间静电库仑力)分子晶体(范德瓦尔斯力)金属晶体(电子云和原子实之间的静电库仑力)共价晶体(共价键)氢键晶体(氢键作用)17.答:爱

23、因斯坦模型建立的基础是认为所有的格波都以相同的频率振动,忽略 了频率间的差别,没有考虑格波的色散关系。18.答:空穴:空缺一个状态的能带的电流犹如由一个带正电荷e,具有空缺态 电子的速度的“粒子”对电流的贡献。这一粒子称为“空穴”空穴的属性:带正电荷e速度为缺失状态电子的速度,有效质量为正,数值等于该电子有效质量的绝对值。11 / 20四、推导题1.解:德拜模型格波为弹性波,色散关系为:m利用:g( )d0/kBT频线是一个个圆周,在 q q dq 区间内波矢数为:SdZ22 qdq(2 )2模式密度:dg() 史d 2二维介质由两支格波,总模式密度:格波振动能:mQE02(e/1)ddq -

24、 dcd内包含的振动模式数目为:dcdZ模式密度:g(dZdPqLccq,IdN0cN是原子总数得晶格热容:ZEkBLc/kBT/kBTLkBTD/Tx 2e x .x 2dxo(e 1)其中DkB2.解:德拜模型格波为弹性波,色散关系为q,在二维波矢空间内,格波等2dg(12 / 20m/ kT2eK( )2斎doKT (e 1)其中Dmk高温极限: ex1 xCv2Nk,与经典理论一致。低温极限:D/Tx 3,ex2dx 6 (3)(常数)o(e 1)CvAT2在低温下二维晶格的热容量与温度的平方成正比。3.解:只考虑临近原子相互作用,第n个原子所受的总作用力fn-2UnUn 1Un 1U

25、n第n个原子的运动方程质量为m的原子位于2n,2n+2,2n+4S其中:mg(0)d2N0kTSkk(kT)2x 3e xxo(erdx1)2晶格热容:Cv设解的形式为:2 2Md2UnAeiiqae2UnqnaiqaeUn 1Un 1cos qa2qa4sinM2sin 更4.解:质量为M的原子位于2n-1,2n+1,2n+32213 / 20Aei t2naq2n2n 1i t 2n 1 aqBe带回到运动方程得到:m2A(eiaqeiaq)B 2 A (2 m2)A (2 cosaq)B 0M2B(eiaqeiaq)A 2 B (2 cosaq)A (2 M2)B 0若A、B有非零的解,

26、系数行列式满足:cosa2 cosaq1 1 mM4mM(m M )2sin2aq1/2lm1 1mM4mM(m M )2sin21/2,aq !m1 1mM4mM(m M )2sin2aq 1/2运动方程为:2n ?2n2n2n 12n设方程解的形式:2nAeit 2na q和2n 1i t 2n 1 aqBe因为M m,复式格子中不同原子振动的振幅一般来说是不同的。将12n 222nM2n 114 / 201解:由题设可得金属铝的电子浓度为:2 723233293n 3 (6.02 10 )1.8 10 (cm )1.8 10 (m )2.解:(1)该周期场的势能曲线如下所示:其势能平均值

27、为:b1222-m (b x )dxb21m b 4b 6(2)根据近自由电子模型,此晶体的第1及第2个禁带宽度为巳2UJE22U2其中 U1和 U2表示周期场 U (x)的展开成傅立叶级数的第一和第二个傅立叶系数。于是有U11b i2e4b3b1兀U ()d1bi2丄1e4b4bb1 m22(b22)d2 24m b3U21b i2e4b3b_2_兀U()d1bi2丄e4b4bb1 m22(b22)dm2b222故此晶体的第1及第2个禁带宽度为计算题KF(32n)1/3(31.8 1029)1/31.75 1010(m1)VF2 2KF(1.0546 10341.75 1010)22m2 9

28、.11 10311.871018JKFm(1.0546 10341.75 1010)9.11 103162.03 10 m/s7b5b3b4U1m、22b2U(x)dxU -dxbU(x)dx3bbdx15 / 20近邻i k RnJ eRn于面心立方点阵,S态电子波函数来说,交迭积分相等,原点的最近邻位 于aaaR 2( 1, 1,0),2(1,0, 1),-(0, 1, 1)(3分)将最近邻的12个格点的格矢代入公式:近邻Es(k) E:CsJ eikRnRnE:Cs4J (cos kxa cos kya1 1 1 1cos kya cos kza cos kza cos kxa)2y2

29、2 2(2)在k1的极限下,将cos1kxa等用泰勒级数展开21 12(kxa)取一级近似,得2 2显然,Es(k)与k的方向无关,即等能面为球形。2有效质量 m 2E 2Ja4.解:1)声学波的最大频率:3 1014rad.s虫0.2Mm ME12U1c 2| 28m b3E22U2m2b22利用紧束缚模型计算能带Es(k) E?Cs3.解:(1)cos1kxa2Es(k)CS12J Jk2a2光学波的最大频率:Omax16 / 20光学波的最小频率:Omax6.7 1014rad sO min6 1014rad s17 / 202)相应声子的能量由于GaAs的空间点阵为面心立方结构,故其固

30、体物理学原胞基矢为:a1a /.列k)2.7951010(jk)a2az,尹i) 2.7951010(ki)a3az.2(ij) 2.7951010(ij)其倒格子基矢为:b2 (i jk)1.1241010( ij k)ab22(i jk)1.1241010(ij k)ab32(i jk)1.1241010(ij k)a(3)密勒指数为(110)晶面族的面间距为:dn022旦 2.795 1010m2K1101 b11 b20 b3AmaxOmaxOminEAmaxAmax,EAmax0.198eVEOmaxOOmax,Emax0.442eV爲,Erin0.396eV3)因为 EOax0.4

31、42eV,对应电磁波的波长为2.8 m要激发max的声子所用的电磁波波长在近红外线波段解:(1)由题意可知,GaAs的晶格为复式面心 立方晶格,其原胞包含一个Ga原子和一个As原子, 其中Ga原子处于面心立方位置上,而As原子则处 于立方单元体对角线上距离Ga原子1/4体对角线 长的位置上,如左图所示:J3由此可知:d a44.32.45 1010m=5.59 1010m2Emin5. Ga 原子Q As 原子18 / 20根据倒格子矢的性质可知,密勒指数为(110)和(111)晶面法向方向间的19 / 20夹角即为倒格子矢 Kuo 和 Kifi之间的夹角,设为,则有:arccosK110K

32、诃KK110iii6.解(1)dE kdkma2a sin kasinkasinkasinka/a,能带宽度:0 b3)(1 b(1 b11 b21 b1b20 b3|1=arccos( 0.3015)2a sin 2ka1sin 2ka 4sin kacoska20ma2ma2EmaxEmin/aEmin22mama2max(2)kEk 丄坐dk2 asinka mama1sin ka sin 2ka47.解:(1)Es根据紧束缚模型,sA JseikRnnS带的能量:对体心立方,最近邻的原子有代入上式,有:Esk.kskyi -a a22e11b2b11 b2107.5522masin 2

33、ka4Rn为最近邻格点8个,即zai &a2+e21 b3)b3a2,a2,2220 / 201cos2(2)kla kza2 2kxkykzi a aza222e2Jskxa1cos-2kyakxakyakza1COS-2kxakya kzakza1cos2kxakyakza1A 2Js2cos kya kza2A 8JScos根据 Esk在 kxky为能带底1cos-2kxa112coskxacos kya kza2211kxa cos k 222:yacoskza2kzmin匚s在 H ,0,0 处,a为能带顶max匚s1118JScoskxa cos kya cos kza2220,0

34、,0 处,Esk 最小8JSEs最大8JSE kkx4Jsas inkxacos2kyacos2kza22E k2Jsa2coskxa2kyacos- coskza22E kkxky4Jsa2s inkxa2sinkya2kza cos-2在带底0,0,0 处,mxx2E/k;2Jsa2mxy2E/ kxkymyymzz% 2Jsa22221 / 2022 / 20myzmxz六、证明题1.证明:倒格子基矢为:2.证明: 离原点最近的晶面如下图所示:ABC是晶面族(hih2hs)离原点最近的晶面,a2bi2邑;b22a3ai.b32aa?aia2a3aia2a3aia2a3倒格子体积:v;bi(b2b3)(2)3(aVc3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论