版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、情境问题情境问题:设设x年可实现年可实现翻一番的目标翻一番的目标,则有,则有假设假设2005年我国的国民生产总值为年我国的国民生产总值为a亿元,如每年平均增长亿元,如每年平均增长8%,那,那么经过多少年,国民生产总值可翻一番?么经过多少年,国民生产总值可翻一番? a(10.08)x2a,即,即1.08x2在指数式中,已知底数和指数,通过乘方运算可求幂;而已知指在指数式中,已知底数和指数,通过乘方运算可求幂;而已知指数和幂,则可通过用开方运算或分数指数幂运算求底数;已知底数和数和幂,则可通过用开方运算或分数指数幂运算求底数;已知底数和幂,如何求指数呢?幂,如何求指数呢? 数学建构:数学建构:一般
2、地,如果一般地,如果a (a0,a1 )的的b次幂等于次幂等于N,即,即abN那么就称那么就称b为为以以a为底的为底的N的对数的对数记作:记作:logaNb1对数的定义对数的定义a0,a1b RN0abN对数式对数式指数式指数式logaNb底数指数幂底数真数对数数学应用:数学应用:例例1将下列各指数式改写成对数式将下列各指数式改写成对数式(1)24=16(2)33=127(3)5a=20(4) =0.4512b log2164 log3 1273 logaabblog520alog0.45b12 aNlogaN对数恒等式对数恒等式对数是一种运算对数是一种运算对数是一个结果对数是一个结果对数的本
3、质对数的本质数学应用数学应用:例例2求下列各式的值求下列各式的值:(1)log264(2)log927根据对数的定义,写出下列各式的值根据对数的定义,写出下列各式的值(其中其中a0,a1 )(1)log10100(2)log255(3)log2 12(4)log13(5)log33(6)logaa(7)log31(8)log学建构:数学建构:2关于对数的几个要点关于对数的几个要点(1)负数和负数和0没有对数;没有对数;(2)常用对数:底数为常用对数:底数为10的对数称为常用对数,记为的对数称为常用对数,记为lgN;(3) 自然对数:底数为自然对数:底数为e的对数称为常
4、用对数,记为的对数称为常用对数,记为lnN loga abb; a NlogaN(4)对数恒等式对数恒等式数学应用:数学应用:例例3将下列对数式改写成指数式将下列对数式改写成指数式(1) log51253(3) lga1.699(2)13log2 数学应用数学应用:例例4已知已知loga2m,loga3n,求,求a2mn的值的值求求22的值的值log25数学应用数学应用:练习练习 921x000131(1)lg(lg10) ;(2)lg(lne) ;(3)log6log4(log381) ;(4)log3( )1,则,则x_数学应用:数学应用:练习练习 2把把logx z表示成指数式是表示成指数式是 7z81,(,1( ),(1,)2logxxf xx x 1( )4f x 3设设,则满足,则满足的的x值为值为_ 332222xxxx5设设xlog23,求,求小结:小结:abN logaNb 注:注: (1)负数和负数和0没有对数;没有对数; (2)常用对数与自然对数;常
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司拆船工岗位职业健康技术规程
- 农业经理人操作规范模拟考核试卷含答案
- 2025-2026学年冀教版(新教材)二年级上册第七单元(期末复习)达标试卷附参考答案
- 海水的性质与运动(同步训练)-2026年高考地理一轮复习(解析版)
- 轨迹、路径类综合练习(提优)-2026年中考数学几何专项复习(解析版)
- 河南省商丘市2024-2025学年高一年级下册期末考试英语试卷
- 揭秘数学之韵
- 教育创新与技术融合
- 教学课件创新设计
- 第四单元 可能性(单元测试提高卷)-2026五年级数学上册(人教版)含答案
- 空调维保投标方案(技术标)
- 工伤认定申请表(范表)
- 《公路水下隧道设计规范》(3371-2022)
- 巴马格卷绕头说明书模板
- 高中化学竞赛有机化学-芳香烃
- 网架挠度测量观测的内业成果整理-三角高程测量观测成果的记录、整理与验算
- 长荣股份:投资性房地产公允价值评估报告
- A320飞动模必看宝典
- 原子核物理习题解答
- GB/T 23001-2017信息化和工业化融合管理体系要求
- GB 31603-2015食品安全国家标准食品接触材料及制品生产通用卫生规范
评论
0/150
提交评论