第二章 球面与共轴球面系统_第1页
第二章 球面与共轴球面系统_第2页
第二章 球面与共轴球面系统_第3页
第二章 球面与共轴球面系统_第4页
第二章 球面与共轴球面系统_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章 球面和共轴球面系统v2.1 光经过单个折射球面的折射v2.2 单个折射球面的成像倍率、拉赫不变量v2.3 共轴球面系统v2.4 球面反射镜2.1 光线经过单个折射球面的折射v2.1.1 ()v2.1.2 实际光线经过单个折射球面的光路计算公式v2.1.3 近轴光的光路计算公式 一个物体经过特定光学系统的成像过程,实际是光线经过光学系统各个折射面折射后的综合效果。要知道具体的成像关系,需要逐个面进行光路计算。因此本章我们首先讨论单个折射球面的折射成像关系的计算,然后再过渡到整个系统的计算。 本章主要讨论的光路计算。2.1.1 符号规则v图中OE为n和n的分界面(球面);C为球心;OC为球

2、面曲率曲率半径半径,大小为r;通过球心的直线是光轴,和球面的交点为定点O。vOA大小为L,称为;角EAO,大小为U,称为;vOA大小为L,称为;角EAO,大小为U,称为。图2-1 单个折射球面的有关参量注意:注意:起点?起点?终点?终点?顶点?顶点?2.1.1 符号规则v 实际计算中,仅仅了解这些参量的大小是不够的,我们需要知道物(像)点在折射面的左右,折射面的凹凸,光线在光轴的上下。等等信息,所以必须再人为给出一些符号法则来完善这些信息。一般规定 (基准)1、对:以光轴为准,在光轴之上为“”,光轴之下为“”; 2、对:以折射面顶点以折射面顶点O为原点为原点,顶点到光线与光轴交点的方向,与光的

3、传播方向相同则为“”,反之则为“”; 3、(物方孔径角为U,像方孔径角为U):由光轴转向光线,以锐角方向进行度量,顺时针为“”,逆时针为“”;v4、(?):由光轴以锐角转向法线,顺时针为“”,逆时针为“”; v5、(入射角I、反射角I、折射角I):由光线以锐角转向法线, 顺时针为“”,逆时针为“”; v6、(d):由前一折射面的顶点到后一折射面的顶点方向与光线的传播方向一致为“”,反之为“”。2.1.1 符号规则v1、符号规则是人为规定的,不同的书上可能有所不同,但是在使用时只能使用其中一种,不能混淆。v2、在同一次光路计算当中,正方向的规定也最好是唯一的,不建议更换方向(注意:不要随着光线传

4、播方向的变化而不停变化)。2.1.2 实际光线经过单个折射球面的光路计算公式sinsin () sinsin sinsin, sinsinsin sinIUA E CrLrLrIUrnIIInUIUIUUIIIUAE CLrrILrrU三 角 形中 应 用 正 弦 定 律 有 :由 此 推 出 入 射 角 I 公 式 :再 由 折 射 定 律 可 以 求 得 折 射 角的 公 式 :由 图 可 知 :所 以 有 :在 三 角 形使 用 正 弦 定 律 得 : 则 像 方 截 距 为 :书书P19 公式公式2.12.4已知:已知:r,L,U未知:未知:L=? U=?2.1.2 实际光线经过单个折

5、射球面的光路计算公式当物在无限远时, L = ,设一条光线平行于光轴入射,入射高度为,则有: sinsin sinsin 1sinhIrnIInUUIIILrU已知:已知:r,h,U=0未知:未知:L=? U=?2.1.2 实际光线经过单个折射球面的光路计算公式v由上面提供的公式,我们可以由已知的r,L和U求出L和U。v由以上公式可知,当当r,L一定的时候,一定的时候,L是是U的函数的函数,所以A点发出的同心光束,以不同的U角射到折射面再出射时,已经不再是同心光束了,同光轴有多个不同交点,说明成像已经不完善了,这就是所谓“球差球差”。v可见,球差是折射球面的原理性误差球差是折射球面的原理性误差

6、。2.1.3 近轴光的光路计算公式v我们假设A点发出的光线与光轴夹角U很小,则相应的角度I、I和U都很小,那么这些角度的了,用小写字母i、i、u和u来表示。v我们定义可以做这样近似的区域为“”或“”。lriurn lrnuiinrlrrnlrn lruuuuuiirnrilrru 此时的光路计算公式变为:2.1.3 近轴光的光路计算公式v根据近轴光路的计算公式有:lu=lu=h11111 2 -3 -= (nnQrlrlnnn unuhrnnnnllr同时我们有三个重要的推论公式:、单折射球面的高斯公式)2.1.3 近轴光的光路计算公式11111 nnQrlrl、2 -nnn unuhr、该公

7、式表示为不变量的形式,Q称为,对于一个折射球面,物空间和像空间的Q值是相同的。不同的共轭关系点会对应不同的Q值,在日后的像差理论学习中有重要意义。该公式表示近轴光折射前后的孔径角u和u之间的关系。3 -= (nnnnllr、高斯公式)该公式表示折射球面的物像位置物像位置l和和l之间的关系之间的关系,是求高高斯像面位置斯像面位置的公式。记记2.2 单个折射球面的成像倍率、拉赫不变量v2.2.1 垂轴倍率v2.2.2 轴向倍率v2.2.3 角倍率 v2.2.4 三个倍率之间的关系v2.2.5 拉格朗日-赫姆霍兹不变量2.2.1 垂轴倍率v定义:。v其数学表示形式为:=y /y从图中可见,根据三角形

8、ABC与ABC相似有:2.2.1 垂轴倍率v又根据阿贝不变量有:2.2.1 垂轴倍率v由之前的公式,可以计算出的具体数值, 的大小和符号有着十分重要的意义,我们用其来判断成像的状况!1) 0 0 llll是有符号数:系统成正像,即 和同号,此时物和像位于折射球面的同一侧;物和像的虚实相反:实物成虚像,虚物成实像。系统成倒像,即 和异号,此时物和像位于折射球面的的两侧;物和像的虚实相同:实物成实像,虚物成虚像。1 2) 1 1 成 放 大 的 像 , 像 比 物 大成 缩 小 的 像 , 像 比 物 小物 和 像 的 大 小 一 致3) 注意:的数值是物体位于某一具体位置时的特定值当物体位置改变

9、,的数值也随之改变了。2.2.2 轴向倍率:表示。 v它又分为二种情形来加以讨论:一为物体作微小移动;一为物体移动有限距离。 : 根据轴向放大率的定义,利用高斯公式有: 上式就是沿轴向放大倍率的表示形式,显然其形式与垂轴放大率很相似,从而我们可以将此式再进行一下变换,得到 , 之间的关系: 20从上式可见,所以有,意味着像与物的移动方向相同;同时又有:,即轴向放大率与垂轴放大率不相等,二者放大效果不同。2.2.2 轴向倍率2121 llll此时轴向倍率可以表示为:高斯公式高斯公式1为第一位置处的垂轴放大率;2为第二位置处的垂轴放大率。 2.2.3 角倍率 :近轴区内,一对的, 即: 2.2.4

10、 三个倍率之间的关系即即轴向放大率与角放大率之积等于垂轴放大率轴向放大率与角放大率之积等于垂轴放大率。 2.2.5 拉格朗日-赫姆霍兹不变量vJ称为,说明在一对共轭空间内,y、u和n的乘积为常数。vJ用于描述物高、像高(反映的是视场的大小);物方孔径角、像方孔径角(反映进入系统的能量多少)之间关系的物理量。 v(课后习题第一题)平凸透镜r1=100mm,r2=,d=300mm,n=1.5,当物体在-时候v1)求高斯像面的位置;v2)在平面上刻十字,问其共轭像在什么位置;v3)当入射高度为h=10mm,问光线的像方截距是多少?和高斯像面相比相差多少?说明什么问题?2.3 共轴球面系统v2.3.1

11、 共轴球面系统的转面(或过渡)公式v2.3.2 共轴球面系统的拉赫不变量v2.3.3 共轴球面系统的倍率计算 单个折射球面不能作为一个基本成像元件(反射镜例外,可以单面成像),基本成像元件是至少两个球面或非球面所构成的透镜。大部分透镜都由球面构成,加工方便,成本降低。2.3.1 共轴球面系统的转面(或过渡)公式v复杂的系统由多个折射面构成,必须解决折射面与折射面之间的过渡问题。 假设系统由多个折射面k构成,各折射面的参量如下所示,分别为: 分别为各折射面的曲率半径;折射面之间的间隔;介质折射率。 2.3.1 共轴球面系统的转面(或过渡)公式那么对于近轴光来说,有: 2.3.1 共轴球面系统的转

12、面(或过渡)公式v对于实际光线,公式同上,只不过,符号大写: 设h为光线在折面上入射高度,则在近轴区近似有: 故有:2.3.2 共轴球面系统的拉赫不变量v前面说了单个折射面的J,实际不仅对单个折射面J是个定值,对于整个系统而言,它也是个不变的量。 系统的J:2.3.3 共轴球面系统的倍率计算v对于共轴球面系统,利用转面公式很容易证明三种倍率等于各个折射面相应倍率的乘积。三者的关系:v一个玻璃棒(n=1.5)长500mm,两端为半球面,半径分别是50mm和100mm,物体高1mm,垂直于左端球面顶点之前200mm处的轴线上,试求:v1)物体经过整个玻璃棒后成像的位置;v2)整个玻璃棒的垂轴放大率是多少?2.4 球面反射镜v前面指出,反射定律可认为是折射定律在n=-n时的特例,因此,将之前的折射球面的计算公式代以n=-n,可以得到相应的反射球面计算公式。2.4.1 球面反射镜的物像位置公式2.4.2 球面反射镜的成像倍率2.4.3 球面反射镜的拉赫不变量2.4.1 球面反射镜的物像位置公式v球面反射镜有二种:一为凸面镜;一为凹面镜。 1、物像位置关系式: 我们已知道折射面的物像位置关系式:由于反射是折射

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论