DSP最小系统原理图设计_第1页
DSP最小系统原理图设计_第2页
DSP最小系统原理图设计_第3页
DSP最小系统原理图设计_第4页
DSP最小系统原理图设计_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 TMS320VC5402最小系统原理图设计 绪论DSP(数字信号处理器)是在模拟信号变换成数字信号以后进行高速实时信号处理的专用处理器,其处理速度比最快的CPU还快1050倍。DSP具有可编程特性、运算速度快及接口灵活的特点,使得它在电子产品的研制中发挥着越来越大的作用。采用DSP器件来实现数字信号处理系统已经成为当今社会的发展趋势。在DSP领域,美国TI(德州仪器)公司生产的TMS320家族DSP芯片以其独特的哈佛结构、硬件密集型方案以及灵活的指令系统,成为数字信号处理器产业中的领先者。其C5000系列是16位定点、速度为40M1PS200MIPS、可编程、低功耗和高新能的DSP,在有线和

2、无线通信、IP电话、便携式信息系统、手机、助听器等领域得到了广泛应用。最小系统模块是使得DSP芯片能够工作的最精简模块。如何以最短的开发周期开发出适于自己应用的高性能低成本的DSP最小系统模块,是进行DSP系统开发的第一步。最小系统模块设计包括硬件设计和软件设计。本次设计是对TI公司生产的16位定点DSP芯片TMS320VC5402进行最小系统模块硬件设计,它可以很方便地与外围模块组合成不同功能的应用系统。1 DSP简介1.1 DSP 的应用领域在近 20 多年时间里,DSP 芯片的应用已经从军事、航空航天领域扩大到信号处理、通信、雷达、消费等许多领域 。主要应用有信号处理、通信、语音、图形、

3、图像、军事、仪器仪表、自动控制、医疗、家用电器等。DSP 主要应用市场为3C 领域,占整个市场需求的 90%。 数字蜂窝电话是 DSP最为重要的应用领域之一。由于 DSP 具有强大的计算能力,使得移动通信的蜂窝电话重新崛起,并创造了一批诸如 GSM、CDMA 等全数字蜂窝电话网。在Modem 器件中,DSP 更是成效卓著,不仅大幅度提高了传输速率,且具有接收动态图像能力。另外,可编程多媒体 DSP 是 PC 领域的主流产品。以XDSL Modem为代表的高速通信技术与 MPEG 图像技术相结合,使得高品位的音频和视频形式的计算机数据有可能实现实时交换。目前的硬盘空间相当大,这主要得益于CDSP

4、(可定制 DSP)的巨大作用。预计在今后的 PC 机中,一个 DSP 即可完成全部所需的多媒体处理功能。DSP 也是消费类电子产品中的关键器件。由于 DSP的广泛应用,数字音响设备的更新换代周期变得非常短暂。用于图像处理的 DSP,一种用于 JPEG 标准的静态图像数据处理;另一种用于动态图像数据处理。1.2 DSP的特点DSP 芯片是模拟信号变换成数字信号以后进行高速实时处理的专用微处理器,其处理速度比最快的 CPU 还快 10-50 倍,具有处理速度高、功能强、性能价格比好以及速度功耗比高等特点,被广泛应用于具有实时处理要求的场合。DSP 系统以 DSP 芯片为基础,具有以下优点。1高速性

5、,DSP运行速度高达1000MIPS以上2编程方便,可编程DSP可使设计人员在开发过程中灵活方便的对软件进行修改和升级。3稳定性好,DSP系统以数字处理为基础,受环境温度及噪声的影响比较小,可靠性高。4可重复性好,数字系统的性能基本上不受元器件参数性能的影响,便于测试、调试TMS320VC5402最小系统原理图设计和大规模生产。5集成方便,DSP系统中的数字部件有高度的规范性,便于大规模集成。6性价比高,常用的DSP价格在5美元以下。2 TMS320VC5402 的硬件结构TMS320VC5402 是 TI 的第七代 DSP 产品之一,它具有优化的 CPU 结构,内部有 1 个 40 位的算术

6、逻辑单元(包括一个 40 位的桶式移位寄存器和 2 个独立的 40 位累加器),一个 17×17 的乘法器和一个 40 位专用加法器,16K 字 RAM 空间和 4K×16bit ROM 空间。共 20 根地址线,可寻址 64K 字数据区和 1M 字程序区,具有 64K I/O 空间。处理速度为 l00M IPS ,速度高、功耗低。TMS320VC5402 采用修正的哈佛结构和 8 总线结构(4 条程序/数据总线和 4条地址总线),以提高运算速度和灵活性。在严格的哈佛结构中,程序存储器和数据存储器分别设在两个存储空间,这样,就允许取址和执行操作完全重叠。修正的哈佛结构中,允

7、许在程序和数据空间之间传送数据,从而使处理器具有在单个周期内同时执行算术运算、逻辑运算、位操作、乘法累加运算以及访问程序和数据存储器的强大功能。与修正的哈佛结构相配合, TMS320VC5402 还采用了一个 6 级深度的指令流水线,每条流水线之间彼此独立,在任何一个机器周期内可以有 1 至 6 条不同的指令在同时工作,每条指令工作在不同的流水线上,使指令的执行时间减小到最小和增大处理器的吞吐量。TMS320VC5402 的硬件结构具有硬件乘法器、8 总线结构、功能强大的片内存储器配置和低功耗设计的特点。因此,可以进行高速并行处理,同时,集成度高可节省硬件开销,提高系统抗干扰性。它除了完成数字

8、信号处理任务外,还可以兼顾通用单片机的操作任务,因此,它是集数字信号处理与通用控制电路于一体的多功能低功耗微处理器。综上所述 TMS320VC5402 的 CPU 结构特征如下。(1)具有高性能的改进的哈佛总线结构,即具有三条独立的 16bit 数据存储器总线和一条 16bit 的程序存储器总线。(2)具有一个 40bit 的算术逻辑单元,包括一个 40bit 的筒形移位器和两个独立的加法器。(3)17×17bit 的并行乘法器与专用的 40bit 加法器相结合。(4)具有专用于 Viter bi 蝶形算法的比较、选择、和存储单元(CSSU)。(5)指数译码器可以在一个指令周期内求一

9、个 40bit 累加数的指数值,这里的指数定义为累加器中没有数据占用的位数的个数减去 8。(6)两个地址发生器、八个辅助寄存器和两个辅助寄存器算术单元(ARAU)。3 TMS320VC5402最小系统设计3.1 系统硬件组成基于TMS320C5402最小系统系统框图。此最小系统主要由时钟及复位电路、JTAG仿真调试接口电路以及供电系统,外加WATCH DOG电路等模块构成。系统框图如下:图3-1 最小系统框图3.2 各功能模块设计3.2.1 5V电源产生电路设计电源电路为系统中DSP芯片及其他元器件提供电源。设计时主要从电源电压结构、电流要求及加电次序等三个方面考虑。TMS320VC5402采

10、用了低电压方式,可以大大降低DSP芯片的功耗,DSP芯片的电源分两种,即内核电源(CVdd)和I/O电源(DVdd) 。I/O电源采用3.3V电压,内核供电为1.8V。5V电源产生电路主要功能是将220V的市电经变压器降成9V交流电,通过整流桥整流、电容滤波、再通过三端集成稳压器78L05输出稳5V电压,为TPS73HD318提供5V输入。电路连接图如下。图3-2 电源产生电路原理图3.2.2 TMS320C5402的电源设计TMS320VC5402系统需要的电源类型:CPU核电源、I/O电源。上电次序:CPU内核先于I/O上电,后于I/O掉电。数字部分和模拟部分独立供电。以芯片TPS73HD

11、318设计DSP的电源,TPS73HD318采用了双电源供电机制,以获得更好的电源性能,其工作电压为3.3V和1.8V。与3.3V供电相比,1.8V供电可以大大降低功耗。外部接口引脚仍采用3.3V电压,便于直接与外部低压器件接口,而无需额外的电平转换。芯片还提供了两个宽度为200ms的低电平复位脉冲。给TPS73HD318提供5V输入,就可以得到3.3V、1.8V的输出电压,其设计原理图如下图所示。图3-3 TMS320C5402电源原理图3.2.3 时钟电路和JTAG接口电路设计TMS320VC5402内部有震荡电路,外接晶体及负载电容即可正常工作。当然也可以不使用内部震荡电路,直接输入时钟

12、信号。当使用外接晶体时,要配置正确的负载电容(0-30pF),使输出时钟频率精确、稳定。TMS320VC5402有片内锁相环PLL(Phase-Locked Loops)可以对输入的时钟信号进行分频或者是倍频。TMS320VC5402 片内PLL分频及倍频系数由片内寄存器CLKMD控制,CLKMD上电时的值由上电时对外部管脚CLKMD1、 CLKMD2、 CLKMD3电平采样设定。JTAG是Joint test Action Group的简称,又称JTAG口,它是一符合IEEE Std 1149.1边界扫描逻辑标准的标准接口。它主要用于在硬件上对DSP进行实时在线仿真测试和DSP程序的下载,它

13、提供对所连接设备的边界扫描,同时也可以用来测试引脚到引脚的连续性,以及进行DSP芯片的外围器件的操作测试。本次设计利用DSP芯片内部的振荡器构成时钟电路,在芯片的Xl和X2/CLKIN引脚之间接入一个晶体,用于启动内部振荡器。目前流行的DSP都备有标准的JTAG(Joint Test Action Group)接口,主要用于在线仿真调试。本设计中DSP和仿真器之间的连接电缆超过6 in,将数据传输脚加上驱动,此上拉电阻取10K。两模块与TMS320C5402的连接方式如图所示。图3-4 时钟电路和JTAG接口原理图3.2.4 复位和WATCH DOG电路设计TMS320VC54X复位有三种方式

14、,即上电复位、手动复位、软件复位。前两种是通过硬件电路实现的复位,后一种是通过指令方式实现的复位。在系统刚接通电源时,复位电路应处于低电平以使系统从一个初始状态开始。这段低电平时间应该大于系统的晶体振荡启振时间,以便避开振荡器启振时的非线性特性对整个系统的影响。工作中复位则要求复位的低电平至少保持6个时钟周期,以使芯片的初始化能够正确完成。当时钟电路工作后,只要在RS引脚上出现2个外部时钟周期以上的低电平,芯片内部所有电路寄存器都初始化复位。只有当此引脚变为高电平后,芯片内的程序才可以从0FF80h地址开始执行。通过按钮实现复位操作。当按钮按下时,将电容C12上的电荷通过按钮串接的电阻R3释放

15、掉,使电容C12上的电压降为0。当按钮松开时,由于电容C12上的电压不能突变,所以通过电阻R2进行充电,充电时间由R2C12的乘积值决定,一般要求大于5个外部时钟周期,可根据具体情况选择。这样就可以实现手动按钮复位。看门狗电路起着监视DSP动作的作用。系统在运行过程中通过I/O输出给看门狗的输入端WDI脚正脉冲,两次脉冲时间间隔不大于1.6s,则引脚永远为高电平,说明DSP程序执行正常。但如果程序跑飞,就不可能按时通过I/O输出发出正脉冲。当两次发出正脉冲的时间间隔大于1.6s时,看门狗便使置为低电平,将使系统复位。两模块的连接方式如图所示。图3-5 复位电路原理图3.2.5 存储器扩展TMS

16、320VC5402片内有4k×16bits的ROM和16k×16bits的DARAM。用户的程序不能直接写在片上ROM上,一般来说,应该在片外扩展存储器用来存放用户的程序代码。另外,考虑到系统运行中,DSP往往要做大量的数据处理工作,经常有一些采集到的或生成的数据需要及时进行存储或调用,因此当片上16k的DARAM不够用时,需要外部扩展数据存储器。TMS320VC5402只能外接异步存储器。同步存储器接口是数据、地址和控制总线使用统一的时钟进行同步,如SDRAM、同步FIFO等。异步存储器接口是数据、地址和控制总线无统一的时钟进行同步,如SRAM、FLASH等。FLASH接

17、口控制信号的生成与SRAM基本相同,所不同的是在对FLASH进行读写的时候等待周期要设得更长,具体值要根据5402的当前频率以及不同型号FLASH的数据手册。FLASH在写入的时候与SRAM不同,必须使用擦除和写入命令序列,厂商不同,命令序列稍有不同。MS320VC5402在外接存储器时的注意事项:如没有使用的管脚要做适当的处理:READY和HOLD上拉。如果外部总线上挂接的设备较多,应适当的添加总线驱动设备,如244,245等。为了布线的方便,SRAM的地址和数据总线可以适当的交换,而FLASH不行。图3-6 SRAM存储器与5402接口TMS320VC5402提供了两种程序运行方式:微处理

18、器方式和微计算机方式。系统复位时,CPU会自动检测引脚的状态,来判断采用哪种方式运行程序。微计算机方式是通过引导程序将用户代码从外部加载至片内RAM或扩展的RAM中,以便实现高速运行。微计算机方式省去了对DSP片内ROM进行掩膜编程等操作,节省了大量费用,并且可以使用户代码存储在片外相对慢速、非易失性器件中,而装载运行于高速器件,提高了运行速度,因此被广泛采用。5402提供了多种引导模式。如图3-7所示:图3-7 存储器扩展电路图3-7为使用并行引导模式为5402外扩存储器电路图。图中,SST29LE010是SST公司的29系列128k×8bits多用途闪速存储器(FLASH)中的一种,它采用低电压(3036V)供电。可直接与DSP连接。根据并行引导模式的特点,将FLASH配置为5402的外扩数据存储器。4 最小系统设计原理图总结作为一个电信本科生,掌握DSP系统的设计技术是非常重要的,通过对本课题的学习,了解了DSP最小系统的设计及应用,锻炼独立设计电路的能力和动手能力。这次课程设计我学到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论