




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知全集U=x|x24,xZ,A-1B-1,0C-2,-1,0D-2,-1,0,1,22已知函数满足,设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既
2、不充分也不必要条件3若函数在时取得最小值,则( )ABCD4用数学归纳法证明1+2+3+n2=n4Ak2+1Ck2+15设全集U=R,集合,则()ABCD6已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为( )AB3CD7若实数满足不等式组则的最小值等于( )ABCD8我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”( 注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是( )ABCD9已知命题,;命题若,则,
3、下列命题为真命题的是()ABCD10函数(其中是自然对数的底数)的大致图像为( )ABCD11一个几何体的三视图如图所示,则该几何体的体积为( )ABCD12已知函数,则( )AB1C-1D0二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系xOy中,若圆C1:x2(y1)2r2(r0)上存在点P,且点P关于直线xy0的对称点Q在圆C2:(x2)2(y1)21上,则r的取值范围是_14在的二项展开式中,所有项的系数之和为1024,则展开式常数项的值等于_15函数在处的切线方程是_.16一个长、宽、高分别为1、2、2的长方体可以在一个圆柱形容器内任意转动,则容器体积的最小值为_
4、.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,有一个微型智能机器人(大小不计)只能沿着坐标轴的正方向或负方向行进,且每一步只能行进1个单位长度,例如:该机器人在点处时,下一步可行进到、这四个点中的任一位置记该机器人从坐标原点出发、行进步后落在轴上的不同走法的种数为(1)分别求、的值;(2)求的表达式18(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.19(12分)已知函数(I)若讨论的单调性;()若,且对于函数的图象上两点,存在,使得函数的图象在处的
5、切线.求证:.20(12分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由21(12分)如图,在四棱柱中,平面平面,是边长为2的等边三角形,点为的中点()求证:平面;()求二面角的余弦值()在线段上是否存在一点,使直线与平面所成的角正弦值为,若存在求出的长,若不存在说明理由22(10分)在直角坐标系x0y中,把曲线为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系
6、,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】先求出集合U,再根据补集的定义求出结果即可【详解】由题意得U=x|A=1,2CU故选C【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题2B【解析】结合函数的对应性,利用充分条件和必要条件的定义进行判断即可【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B【点睛】本题主要考查充分条件和必
7、要条件的判断,结合函数的对应性是解决本题的关键,属于基础题3D【解析】利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值【详解】解:,其中,故当,即时,函数取最小值,所以,故选:D【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题4C【解析】首先分析题目求用数学归纳法证明1+1+3+n1=n4【详解】当n=k时,等式左端=1+1+k1,当n=k+1时,等式左端=1+1+k1+k1+1+k1+1+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+(k+1)1故选:C【点睛】本题主要考查数学归纳法,属于中档题./5A【解析】求出集合M和集合N,
8、,利用集合交集补集的定义进行计算即可【详解】,则,故选:A【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题6B【解析】根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.7A【解析】首先画出可行域,利用目标函数的几何意义求的最小值【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以故选:A【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利
9、用几何意义求值,属于中档题8B【解析】先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】不超过的素数有:、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、,共种情况,因此,所求事件的概率为.故选:B.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.9B【解析】解:命题p:x0,ln(x+1)0,则命题p为真命题,则p为假命题;取
10、a=1,b=2,ab,但a2b2,则命题q是假命题,则q是真命题pq是假命题,pq是真命题,pq是假命题,pq是假命题故选B10D【解析】 由题意得,函数点定义域为且,所以定义域关于原点对称, 且,所以函数为奇函数,图象关于原点对称, 故选D.11A【解析】根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题12A【解析】由函数,求得,进而求得的值,得到答案.【详解】由题意函数,则,所以,故选A.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键
11、,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设圆C1上存在点P(x0,y0),则Q(y0,x0),分别满足两个圆的方程,列出方程组,转化成两个新圆有公共点求参数范围.【详解】设圆C1上存在点P(x0,y0)满足题意,点P关于直线xy0的对称点Q(y0,x0),则,故只需圆x2(y1)2r2与圆(x1)2(y2)21有交点即可,所以|r1|r1,解得.故答案为:【点睛】此题考查圆与圆的位置关系,其中涉及点关于直线对称点问题,两个圆有公共点的判定方式.14【解析】利用展开式所有项系数的和得n=5,再利用二项式展开式的通项公式,求得展开式中的常
12、数项.【详解】因为的二项展开式中,所有项的系数之和为4n=1024, n=5,故的展开式的通项公式为Tr+1=C35-r,令,解得r=4,可得常数项为T5=C3=15,故填15.【点睛】本题主要考查了二项式定理的应用、二项式系数的性质,二项式展开式的通项公式,属于中档题.15【解析】求出和的值,利用点斜式可得出所求切线的方程.【详解】,则,.因此,函数在处的切线方程是,即.故答案为:.【点睛】本题考查利用导数求函数的切线方程,考查计算能力,属于基础题.16【解析】一个长、宽、高分别为1、2、2的长方体可以在一个圆柱形容器内任意转动,则圆柱形容器的底面直径及高的最小值均等于长方体的体对角线的长,
13、长方体的体对角线的长为,所以容器体积的最小值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),(2)【解析】(1)根据机器人的进行规律可确定、的值;(2)首先根据机器人行进规则知机器人沿轴行进步,必须沿轴负方向行进相同的步数,而余下的每一步行进方向都有两个选择(向上或向下),由此结合组合知识确定机器人的每一种走法关于的表达式,并得到的表达式,然后结合二项式定理及展开式的通项公式进行求解.【详解】解:(1),(2)设为沿轴正方向走的步数(每一步长度为1),则反方向也需要走步才能回到轴上,所以,1,2,(其中为不超过的最大整数)总共走步,首先任选步沿轴正方向走,再在剩下
14、的步中选步沿轴负方向走,最后剩下的每一步都有两种选择(向上或向下),即 等价于求中含项的系数,为其中含项的系数为 故【点睛】本题考查组合数、二项式定理,考查学生的逻辑推理能力,推理论证能力以及分类讨论的思想.18(1)函数的单调递增区间为和,单调递减区间为;(2).【解析】(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【详解】(1),当时,函数在内单调递增;当时,令,解得或,当或时,则单调递增,当时,则单调递减,函数的单调递增区间为和,单调递减区间为(2)()当时,所以在上无零点;()当时,若,即,则是的一个零点;若,即,则不是的零点()
15、当时,所以此时只需考虑函数在上零点的情况,因为,所以当时,在上单调递增。又,所以()当时,在上无零点;()当时,又,所以此时在上恰有一个零点; 当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,因为,所以此时在上恰有一个零点,综上,【点睛】本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想19 (1)见解析(2)见证明【解析】(1)对函数求导,分别讨论,以及,即可得出结果;(2)根据题意,由导数几何意义得到,将证明转化为证明即可,再令,设 ,用导数方法判断出的单调性,进而可得出结论成立.【详解】(1)解:易得,函数的定义域为,令,得或.当时
16、,时,函数单调递减;时,函数单调递增.此时,的减区间为,增区间为.当时,时,函数单调递减;或时,函数单调递增.此时,的减区间为,增区间为,.当时,时,函数单调递增;此时,的减区间为. 综上,当时,的减区间为,增区间为:当时,的减区间为,增区间为.;当时,增区间为.(2)证明:由题意及导数的几何意义,得由(1)中得.易知,导函数 在上为增函数,所以,要证,只要证,即,即证.因为,不妨令,则 .所以 ,所以在上为增函数,所以,即,所以,即,即.故有(得证).【点睛】本题主要考查导数的应用,通常需要对函数求导,利用导数的方法研究函数的单调性以及函数极值等即可,属于常考题型.20(1)(2)是为定值,
17、的横坐标为定值【解析】(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离心率以及,求得,由此求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆方程,化简后写出根与系数关系.求得直线的方程,并求得两直线交点的横坐标,结合根与系数关系进行化简,求得的横坐标为定值.【详解】(1)依题意可知,解得,即;而,即,结合解得,因此椭圆方程为(2)由题意得,左焦点,设直线的方程为:,由消去并整理得,直线的方程为:,直线的方程为:联系方程,解得,又因为所以所以的横坐标为定值【点睛】本小题主要考查根据椭圆离心率求椭圆方程,考查直线和椭圆的位置关系,考查直线和直线交点坐标的求法,考查运
18、算求解能力,属于中档题.21()证明见解析;();()线段上是存在一点,使直线与平面所成的角正弦值为.【解析】()取中点,连结、,推导出四边形是平行四边形,从而,由此能证明平面;()取中点,连结,推导出平面,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值;()假设在线段上是存在一点,使直线与平面所成的角正弦值为,设利用向量法能求出结果【详解】()证明:取中点,连结、,是边长为2的等边三角形,点为的中点,四边形是平行四边形,平面,平面,平面()解:取中点,连结,在四棱柱中,平面平面,是边长为2的等边三角形,点为的中点,平面,以为原点,为轴,为轴,为轴,建立空间直角坐标系,1,0,1,0,0,设平面的法向量,则,取,得,设平面的法向量,则,取,得,设二面角的平面角为,则二面角的余弦值为()解:假设在线段上是存在一点,使直线与平面所成的角正弦值为,设则,平面的法向量,解得,线段上是存在一点,使直线与平面所成的角正弦值为【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查满足正弦值的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题22(1)的普通方程为,的直角坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自助美甲店合作合同范本
- 高空作业安全打协议合同
- 消毒用品捐献协议书模板
- 浴场会所托管合同协议书
- 离婚前三年的财产协议书
- 物业零星工程施工协议书
- 自媒体运营团队合同范本
- 第三方协议护理网签合同
- 续签的合同上没竞业协议
- 糖果批发转让协议书模板
- GA/T 1323-2016基于荧光聚合物传感技术的痕量炸药探测仪通用技术要求
- 2023年苏州国发创业投资控股有限公司招聘笔试题库及答案解析
- 护士注册健康体检表下载【可直接打印版本】
- 高中历史《第一次工业革命》说课课件
- 学生集体外出活动备案表
- SH3904-2022年石油化工建设工程项目竣工验收规定
- 叉车检验检测报告
- DNF装备代码大全
- 基于Qt的俄罗斯方块的设计(共25页)
- 古建筑木构件油漆彩绘地仗施工技术分析
- 食堂投诉处理方案
评论
0/150
提交评论