精品解析2022年最新浙教版初中数学七年级下册第四章因式分解单元测试练习题(精选)_第1页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解单元测试练习题(精选)_第2页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解单元测试练习题(精选)_第3页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解单元测试练习题(精选)_第4页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解单元测试练习题(精选)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、章节同步练习2022年浙教版初中数学 章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左边到右边的变形中,属于因式分解的是( )A.B.C.D.2、已知,则的值是( )A.6B.6C.1D.13、下列各式从左到右的变形是因式分解为( )A.B.C.D.4、下列因式分解正确的是()A.x29(x3)(x3)B.x2x6(x2)(x3)C.3x

2、6y33(x2y)D.x22x1(x1)25、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)6、把多项式x2+ax+b分解因式,得(x+3)(x4),则a,b的值分别是()A.a1,b12B.a1,b12C.a1,b12D.a1,b127、下列各式由左到右的变形中,属于因式分解的是()A.a2abac=a(a+b+c )B.x2+x+1=(x+1)2xC.(x+2)(x1)=x2+x2D.a2+b2=(a+b)22ab8、下列各式从左到右的变形,因式分解正确的是()A.x2+4(x+2)

3、2B.x210 x+16(x4)2C.x3xx(x21)D.2xy+6y22y(x+3y)9、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解10、已知,则代数式的值为( )A.B.1C.D.211、已知,那么的值为( )A.3B.6C.D.12、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主13、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值是()A.

4、2B.2C.12D.1214、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.515、在下列从左到右的变形中,不是因式分解的是()A.x2xx(x1)B.x2+3x1x(x+3)1C.x2y2(x+y)(xy)D.x2+2x+1(x+1)2二、填空题(10小题,每小题4分,共计40分)1、分解因式:3mn212m2n_2、因式分解(ab)2a+b的结果是_3、若a+b2,ab3,则代数式a3b+2a2b2+ab3的值为_4、因式分解:_5、由多项式与多项式相乘的法则可知:即:(ab)(a2abb2)a3a2bab2a2bab2b3a3b3即:(ab)(a2abb2)a3b3,我们

5、把等式叫做多项式乘法的立方和公式同理,(ab)(a2abb2)a3b3,我们把等式叫做多项式乘法的立方差公式请利用公式分解因式:64x3y3_6、分解因式:x2y6xy9y_7、由多项式乘法:(x+a)(x+b)x2+(a+b)x+ab,将该式子从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab(x+a)(x+b),请用上述方法将多项式x25x+6因式分解的结果是 _8、若xy6,xy4,则x2yxy2_9、因式分解:x3y2x_10、分解因式:2x3+12x2y+18xy2_三、解答题(3小题,每小题5分,共计15分)1、分解因式:2、分解因式:(1)(2)(3

6、)3、因式分解:(1) (2)-参考答案-一、单选题1、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可.【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;B、符合因式分解的定义,是因式分解,故此选项符合题意;C、右边不是整式积的形式,不是因式分解,故此选项不符合题意;D、,分解错误,故此选项不符合题意;故选:B.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.2、B【分析】首先将 变形为,再代入计算即可.【详解】解:, ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.3、D

7、【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A. ,属于整式的乘法运算,故本选项错误;B. ,属于整式的乘法运算,故本选项错误;C. 左边和右边不相等,故本选项错误;D. ,符合因式分解的定义,故本选项正确;故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4、B【分析】利用公式法对A、D进行判断;根据十字相乘法对B进行判断;根据提公因式对C进行判断.【详解】解:A、x29不能分解,所以A选项不符合题意;B、x2x6(x2)(x3),所以B选项符合题意;C

8、、3x6y33(x2y1),所以C选项不符合题意;D、x22x1在有理数范围内不能分解,所以D选项不符合题意.故选:B.【点睛】本题考查了因式分解十字相乘法等:对于x2(pq)xpq型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x2(pq)xpq(xp)(xq).5、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题

9、意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.6、A【分析】首先利用多项式乘法将原式展开,进而得出a,b的值,即可得出答案.【详解】解:多项式x2+ax+b分解因式的结果为(x+3)(x-4),x2+ax+b=(x+3)(x-4)=x2-x-12,故a=-1,b=-12,故选:A.【点睛】

10、此题主要考查了多项式乘法,正确利用乘法公式用将原式展开是解题关键.7、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;、没把一个多项式转化成几个整式积,故不符合题意;、是整式的乘法,故C不符合题意;、没把一个多项式转化成几个整式积,故不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.8、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10 x+16(x-4)2,因式分解错误,

11、故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.9、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:,属于整式乘法,不属于因式分解;,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注

12、意:把一个多项式化成几个整式的积的形式,叫因式分解.10、D【分析】由已知等式可得,将变形,再代入逐步计算.【详解】解:,=2故选D.【点睛】本题考查了代数式求值,因式分解的应用,解题的关键是掌握整体思想,将所求式子合理变形.11、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.12、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解

13、.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.13、B【分析】根据整式乘法法则进行计算(x5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:(x5)(x+7),故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.14、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】

14、本题考查了提公因式法分解因式,准确找到公因式是解题的关键.15、B【分析】根据因式分解的定义,逐项分析即可,因式分解指的是把一个多项式分解为几个整式的积的形式.【详解】A. x2xx(x1),是因式分解,故该选项不符合题意; B. x2+3x1x(x+3)1,不是因式分解,故该选项符合题意;C. x2y2(x+y)(xy),是因式分解,故该选项不符合题意; D. x2+2x+1(x+1)2,是因式分解,故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.二、填空题1、3mn(n4m)【分析】根据提公因式法进行分解即可.【详解】3mn212m2n=3mn(

15、n4m).故答案为:3mn(n4m).【点睛】本题考查了因式分解,掌握提公因式法分解因式是解题的关键.2、(ab)(ab1)【分析】先整理,再根据提取公因式法分解因式即可得出答案.【详解】解:(ab)2a+b(ab)2(ab)(ab)(ab1).故答案为:(ab)(ab1).【点睛】本题考查了分解因式,熟练掌握提取公因式法分解因式是解题的关键.3、-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【详解】解:a+b=2,ab=3,a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a

16、+b)2,=34,=12.故答案为:12.【点睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.4、【分析】根据因式分解的定义,观察该多项式存在公因式,故.【详解】解:.故答案为:.【点睛】本题主要考查用提公因式法进行因式分解,解题的关键是熟练掌握提取公因式法.5、【分析】根据题意根据立方差公式因式分解即可.【详解】64x3y3故答案为:【点睛】本题考查了因式分解,根据题意套用立方差公式是解题的关键.6、【分析】根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:x2y6xy9y故答案为:

17、.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.7、【分析】根据“十字相乘法”的方法进行因式分解即可.【详解】故答案为:.【点睛】本题考查了十字相乘法因式分解,理解题目中的方法是解题的关键.8、24【分析】先对后面的式子进行因式分解,然后根据已知条件代值即可.【详解】 xy6,xy4,x2yxy2 故答案为:24.【点睛】本题主要考查提取公因式进行因式分解,属于基础题,比较容易,熟练掌握因式分解的方法是解题的关键.9、x(xy1)(xy1)【分析】先提公因式x,再根据平方差公式进行分解,即可得出答案.【详解】解: x3y2xx(x2y21)x(xy1)(xy1)故答案为x(xy1)(xy1).【点睛】此题考查了因式分解的方法,涉及了平方差公式,熟练掌握因式分解的方法是解题的关键.10、2x(x+3y)2【分析】首先提取公因式2x,再利用完全平方公式分解因式得出答案.【详解】解:原式2x(x2+6xy+9y2)2x(x+3y)2.故答案为:2x(x+3y)2.【点睛】此题考查的是因式分解,掌握提公因式法和公式法是解题的关键.三、解答题1、【分析】利用平方差公式因式分解即可【详解】原式 , , , , 【点睛】本题考查了因式分解-运用公式法,熟练掌握平方差公式是解题关键.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论