通信系统课件:第十章 纠错控制编码_第1页
通信系统课件:第十章 纠错控制编码_第2页
通信系统课件:第十章 纠错控制编码_第3页
通信系统课件:第十章 纠错控制编码_第4页
通信系统课件:第十章 纠错控制编码_第5页
已阅读5页,还剩167页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter10

Error-ControlCodingProblems:(pp.696-702)10.410.7

10.1210.15

10.1710.2510.271Chapter10

Error-ControlCoding10.1Introduction10.2Discrete-MemorylessChannels10.3LinearBlockCodes10.4CyclicCodes10.5ConvolutionalCodes10.6MaximumLikelihoodDecodingofConvolutionalCodes10.7Trellis-CodedModulation10.8Turbo

Codes10.9ComputerExperiment:TurboDecoding10.10Low-DensityParity_CheckCodes10.11IrregularCodes10.12SummaryandDiscussion2第十章纠错控制编码10.1引言10.2离散无记忆信道10.3线性分组码10.4循环码10.5卷积码10.6卷积码的最大似然译码10.7网格编码调制10.8Turbo码10.9计算机实验:Turbo码的译码10.10低密度奇偶校验码10.11不规则码10.12总结与讨论3Chapter10

Error-ControlCodingTopics:Error-controlcoding---ChannelcodingImportantcodesLinearblockcodes(Cycliccodes)ConvolutionalcodesCompoundcodes(turbocodes,low-densityparity-checkcodes&irregularcodes)

410.1Introduction

Task

---transmittinginformation arate(velocity) at alevelofreliability(quality)Whyerror-controlcoding?

ForafixedEb/N0,itistheonlypracticaloption

availableforchangingdataqualityfromproblematictoacceptable.510.1Introduction

Systemparameters:transmittedsignalpowerchannelbandwidth+

powerspectraldensityofreceivernoiseSignalenergyperbit/noisepowerspectraldensity(Eb/N0)biterrorrateerrorcontrolcoding(ForfixedEb/N0)(ForfixedBER)Reducetransmittedpowerorhardwarecosts6Figure10.1

Simplifiedmodelsofdigitalcommunicationsystem.(a)Codingandmodulationperformedseparately.(b)Codingandmodulationcombined.710.1Introduction

Infig.10.1a,channelcodingandmodulationareperformedseparately.Infig.10.1b,channelcodingandmodulationarecombined(TCM).--->bandwidthefficiencyisincreased810.1Introduction

Channelencoder--addsredundancyaccordingtoaprescribedruleChanneldecoder--exploittheredundancytodecideactuallytransmittedmessagebitsAdvantage--minimizetheeffectofchannelnoise(reducetheBER)Disadvantage--increasetransmissionbandwidthandsystemcomplexity

910.1Introduction

Classification:blockcodes--absenceofmemory

convolutionalcodes--presenceofmemory

(n,k)blockcode---(n-k)redundantbitscoderater=k/nchanneldatarateR0=(n/k)*Rs

(sourcedatarate)

(n,k,N)convolutionalcodetheinputsequencetheimpulseresponseof theencoder(duration=memoryoftheencoder N)--discretetimeconvolution

1010.1Introduction

FEC(Feed-forwarderrorcorrection)redundancyusedfordetection&correctionoferrorsinreceiver(channelcoding)one-waylink&decodingcomplexitywiderinapplicationARQ(automatic-repeatrequest)redundancyusedonlyfordetectionoferrorserror-->repeattransmissionhalf-duplexorfull-duplexlinks(feed-backchannel)computercommunicationsystems1110.1Introduction

TypesofARQstop-and-waitstrategy(half-duplexlink)continuousARQwithpullback(duplexlink)continuousARQwithselectiverepeat(duplexlink)TheabovethreetypesofARQoffertrade-offbetweentheneedforahalf-duplexorfull-duplexlinkanddatathroughout.1210.2Discrete-MemorylessChannels

Memorylesswaveformchannel:thedetectoroutputinagivenintervaldependsonlyonethesignaltransmittedinthatinterval(seefig.10.1a)Discretememorylesschannel:themodulator+thewaveformchannel+thedetectorTransitionprobabilitiesp(j|i)describeadiscretememorylesschannelcompletely1310.2Discrete-MemorylessChannels

BinarysymmetricchannelFigure10.2Transitionprobabilitydiagramofbinarysymmetricchannel.1410.2Discrete-MemorylessChannels

Harddecisiondecoder--algebraicdecodersimplicityofimplementationirreversiblelossofinformationSoftdecisiondecoder--probabilisticdecodercomplicatestheimplementationofferssignificantimprovementinperformance15Figure10.3BinaryinputQ-aryoutputdiscretememorylesschannel.

(a)Receiverforbinaryphase-shiftkeying.(b)Transfercharacteristicofmultilevelquantizer.(c)Channeltransitionprobabilitydiagram.Parts(b)and(c)areillustratedforeightlevelsof

quantization.1610.2Discrete-MemorylessChannelsChannelcodingtheoremrevisitedChannelcapacity:maximumamountofinfor-mationtransmittedperchanneluse(inchapter9)Channelcodingtheorem:ifR(rateofsourceinformation)≤C(capacityofadiscretememorylesschannel),thenthereexistsacodingtechniquesuchthattheoutputofsourcemaybetransmittedoverthechannelwithanarbitrarilylowprobabilityofsymbolerror(Pe->0.)1710.2Discrete-MemorylessChannelsChannelcodingtheoremrevisited(cont.)Channelcodingtheoremexistenceofgoodcodesnon-constructiveerror-controlcodingtechniques:providedifferentmethodsofdesigninggoodcodesNotation

modulo-2addition--EXCLUSIVEORoperationmodulo-2multiplication--ANDoperation1810.3LinearBlockCodes

Definitionoflinearcode:

ifanytwocodewordsinthecodecanbeaddedinmodulo-2arithmetictoproduceathirdcodewordinthecode.(封闭性)Systematiccode:

themessagebitsaretransmittedinunalteredform.Itsimplifiesimplementationofthedecoder.Figure10.4Structureofsystematiccodeword.1910.3LinearBlockCodes

(n,k)linearblockcode :ncodebits :kmessagebits :(n-k)paritybits,whicharecomputedfromthemessagebitsaccordingtoaprescribedencodingrule2010.3LinearBlockCodes

Mathematicalstructurebii=0,1,..,n-k-1

mi+k-n

i=n-k,n-k+1,..,n-1

ci

=bi=p0im0+p1im1+..+pk-1,imk-1where

pji=1ifbidependsonmj

0

otherwise(10.2)(10.3)(10.1)2110.3LinearBlockCodes

Matrixformm=[m0,m1,..,mk-1]b=[b0,b1,..,bn-k-1]c=[c0,c1,..,cn-1]b=mPp00p01..p0,n-k-1p10p11..p1,n-k-1pk-1,0pk-1,1..pk-1,n-k-1P=(10.4)(10.5)(10.6)(10.7)(10.8)2210.3LinearBlockCodes

Matrixform(cont.)Fromtheequationsin(10.4)-(10.6),cmaybeexpressedasfollows:c=[b|m]

=m[P|

Ik] =mG

WhereGisthek-by-ngeneratormatrix

G=[P|Ik]

where

Ik

isthe

k-by-kidentitymatrix.

G’skrowsarelinearlyindependent.(10.13)(10.10)(10.9)(10.12)2310.3LinearBlockCodes

Matrixform(cont.)LetHdenotethe(n-k)-by-nparity-checkmatrixH=[In-k|PT]

(10.14)H’s(n-k)rowsarelinearlyindependent.Wegetparity-checkequationasfollows:cHT

=

mGHT

=

0(10.16)24Figure10.5Blockdiagramrepresentationsofthegeneratorequation(10.13)andtheparity-checkequation(10.16).usedintheencodingoperationatthetransmitterusedinthedecodingoperationatthereceiver2510.3LinearBlockCodes

Example10.1RepetitionCodes(n,1)blockcodetwocodewordsinthecode:all-zerocodeword&all-onecodewordForn=5,thegeneratormatrixisG=[1111|1]Theparity-checkmatrixisH=100010100100101000112610.3LinearBlockCodes

Syndrome:DefinitionandPropertiesLetrdenotethe1-by-nreceivedvector,weexpressthevectorrasr=c+e(10.17)Wherec--theoriginalcodevector

e--theerrorvectororerrorpattern.

ei

=

1ifanerrorhasoccurredintheithlocation0otherwise(10.18)2710.3LinearBlockCodes

Syndrome(cont.)DefinitionTheerror-syndromevector(or

syndrome)is

definedas:

s=rHT

(10.19)Property1Thesyndromedependsonlyontheerrorpattern,andnotonthetransmittedcodeword.

s=eHT

(10.20)2810.3LinearBlockCodes

Syndrome(cont.)Property2

Allerrorpatternsthatdifferbyacodewordhavethesamesyndrome.

Wedefinethe2kdistinctvectorsei

as

ei

=

e+

ci

(10.21)WegeteiHT=eHT

(10.22)Cosetofthecode--thesetofvectors{ei,i=0,1,..,2k-1}2910.3LinearBlockCodes

Syndrome(cont.)FromEqu.(10.22),weget

s=eHT

=eiHT

Sotheinformationcontainedinthesyndromesabouttheerrorpatterneisnotenoughforthedecodertocomputetheexactvalueofthetransmittedcodevector.Nevertheless,knowledgeofthesyndromesreducesthesearchforthetrueerrorpatternefrom2nto

2n-kpossibilities.3010.3LinearBlockCodes

MinimumdistanceconsiderationsHammingdistanced(c1,c2)--thenumberoflocationsinwhichtheirrespectiveelementsdifferHammingweightw(c)--thenumberofnonzeroelementsinthecodevectorminimumdistance

dmin

--thesmallesthammingdistancebetweenanypairofcodevectorsinthecodeminimumdistancedmin

=smallestHammingweightofthenonzerocodevectors3110.3LinearBlockCodes

Minimumdistanceconsiderations(cont.)relationbetweentheminimumdistancedmin

andtheparity-checkmatrixH

ExpressthematrixHintermsofitscolumns

H=[h1,h2,..,hn]Andacodevectorcsatisfytheequation

HcT

=

0→dmin≤n-k+1Hence,theminimumdistanceofalinearblockcodeisdefinedbytheminimumnumberofcolumnsofthematrixH(orrowsofthematrixHT)

whosesumisequaltothezerovector.3210.3LinearBlockCodes

relationbetweentheminimumdistancedmin

andtheerror-correctingcapabilityofthecodestrategy

forthedecoder--pickthecodevectorclosesttothereceivedvectorr.DetectallerrorpatternsofHammingweightw(e)≤t1 ifandonlyif dmin≥t1+1CorrectallerrorpatternsofHammingweightw(e)≤t2ifandonlyifdmin≥2t2+1DetectallerrorpatternsofHammingweightw(e)≤t1,andcorrectallerrorpatternsofHammingweightw(e)≤t2 ifandonlyif dmin≥t1+t2+1(t1>t2)33Figure10.6

(a)Hammingdistanced(ci,cj)2t1.(b)Hammingdistanced(ci,cj)2t.Thereceivedvectorisdenotedbyr.3410.3LinearBlockCodes

Sputethesyndromes=rHT

2.accordingtos,identifythecosetleader,putethecodevector

c

=

r+

e0as

thedecodedversionofthereceivedvectorrNote:

eachcosetleaderhastheminimumHammingweightinitscoset

35Figure10.7

Standardarrayforan(n,k)blockcode.SubsetD1D2D2kcosetCosetleader3610.3LinearBlockCodes

Example10.2HammingCodesBlocklength:n=2m-1(m≥3)Numberofmessagebits:k=2m-1-mNumberofparitybits:m=n-kminimumdistance:dmin

=

3generatormatrixparity-checkmatrixrelationbetweentheminimumdistancedminandtheparity-checkmatrixHsyndromedecoding3710.3LinearBlockCodes

DualCode

Every

(n,k)linearblockcodewithgeneratormatrix

Gandparity-checkmatrix

Hhasadualcodewithparameters(n,n-k),

generatormatrix

Handparity-checkmatrix

G.3810.4CyclicCodes

asubclassoflinearblockcodeseasytoencodepossessawell-definedmathematicalstructureefficientdecodingschemestwofundamentalproperties:linearitypropertycyclicproperty3910.4CyclicCodes

Codepolynomial

c(X)=

c0+c1X+c2X2+...+cn-1Xn-1

(10.27)whereXisanindeterminate.Forbinarycodes,thecoefficientsci

are1sand0s.Multiplicationofthepolynomialc(X)byXmaybeviewedasashifttotheright.Lemma:

Ifc(X)isacycliccodepolynomial,thenthepolynomial

c(i)(X)=Xic(X)mod(Xn+1)

(10.33)isalsoacodepolynomialforanycyclicshifti.4010.4CyclicCodes

Generatorpolynomial

g(X)=

1+g1X+g2X2+...+gn-k-1Xn-k-1+Xn-k

(10.34)wherethecoefficientsgi

isequalto1or0.

Note:Acycliccodeisuniquelydeterminedbythegeneratorpolynomialg(X).g(X)isapolynomialofdegree(n-k)(thepolynomialofleastdegreeinthecode).g(X)isafactorof(Xn+1).4110.4CyclicCodes

Encodingprocedureforan(n,k)systematiccycliccode1.Multiplythemessagepolynomialm(X)byXn-k

.

m(X)=

m0+m1X+...+mk-1Xk-1

(10.36)2.DivideXn-k

m(X)

bythegeneratorpolynomialg(X),obtainingtheremainderb(X).3.Addb(X)toXn-k

m(X)

,obtainingthecodepolynomialc(X).

c(X)=b(X)+Xn-k

m(X)

4210.4CyclicCodes

Parity-checkPolynomial

(10.40)wherethecoefficientshi

are1or0.

Note:Acycliccodeisalsouniquelyspecifiedbythegeneratorpolynomialh(X).h(X)isapolynomialofdegreek.h(X)isalsoafactorof(Xn+1)anditsatisfies

g(X)h(X)=Xn

+1

(10.42)4310.4CyclicCodes

GeneratorandParity-checkMatricesGeneratormatrixP arity-checkmatrix

4410.4CyclicCodes

EncoderforcycliccodesEncodingprocedureforan(n,k)systematiccycliccode

1.multiplicationofthemessagepolynomialm(X)byXn-k

2.divisionofXn-k

m(X)

bythegeneratorpolynomialg(X)toobtaintheremainderb(X)3.additionofb(X)toXn-k

m(X) ThesethreestepscanbeimplementedbymeansoftheencodershowninFig.10.8,consistingofalinearfeedbackshiftregisterwith(n-k)stages.45Figure10.8

Encoderforan(n,k)cycliccode.4610.4CyclicCodes

Encoderforcycliccodes(cont.)

TheoperationoftheencodershowninFig.10.8proceedsasfollows:Thegateisswitchedon.Hence,thekmessagebitsareshiftedintothechannel.Assoonasthekmessagebitshaveenteredtheshiftregister,theresulting(n-k)bitsintheregisterformtheparitybits.Thegateisswitchedoff,therebybreakingthefeedbackconnections.Thecontentsoftheshiftregisterarereadoutintothechannel.4710.4CyclicCodes

Calculationofthesyndrome

Letthereceivedwordberepresentedbyapolynomialasfollows:r(X)=

r0+r1X+...+rn-1Xn-1

(10.46)

andr(X)maybeexpressedas:

r(X)=q(X)g(X)+s(X)

(10.47)whereq(X)denotesthequotientands(X)denotesthesyndromepolynomial(remainder,degree≤n-k-1).Fig.10.9showsasyndromecalculator.(identicaltotheencoderofFig.10.8)48Figure10.9

Syndromecalculatorfor(n,k)cycliccode.4910.4CyclicCodes

Propertiesofthesyndromepolynomial1.Thesyndromeofareceivedwordpolynomialisalsothesyndromeofthecorrespondingerrorpolynomial.2.Lets(X)bethesyndromeofareceivedwordpolynomialr(X).Then,thesyndromeofXr(X),acyclicofr(X),isXs(X)(modg(X)).3.Thesyndromepolynomials(X)isidenticalto(=)theerrorpolynomiale(X),assumingthattheerrorsareconfinedtothe(n-k)parity-checkbitsofthereceivedwordpolynomialr(X).5010.4CyclicCodes

Example10.3Hammingcodesrevisited

(7.4)cycliccodegeneratorpolynomialparity-checkpolynomialconstructionofacodewordinsystematicformgeneratormatrixparity-checkmatrixencoder(Fig.10.10)syndromecalculator(Fig.10.11)*AnycycliccodegeneratedbyaprimitivepolynomialisaHammingcodeofminimumdistance3.

51Figure10.10

Encoderforthe(7,4)cycliccodegeneratedbyg(X)1X

X3.52Figure10.11

Syndromecalculatorforthe(7,4)cycliccodegeneratedbythepolynomialg(X)1X

X3.5310.4CyclicCodes

Example10.4Maximal-Lengthcodes

Blocklength: n=2m-1

(m≥3)Numberofmessagebits:k=mMinimumdistance: dmin

=2m-1Generatorpolynomial

g(X)=(Xn

+1)/h(X) (10.52)whereh(X)isanyprimitivepolynomialofdegreem.*Maximal-lengthcodesarethedualofHammingcodes.Thepolynomialh(X)definesthefeedbackconnectionsoftheencoder.Thegeneratorpolynomialg(X)definesoneperiodofthemaximal-lengthcode,assumingtheinitialstateis00...01.5410.4CyclicCodes

Example10.4Maximal-Lengthcodes

(7,3)maximal-lengthcode--dualofthe(7,4)HammingcodeBlocklength:n=7

Numberofmessagebits:k=3Minimumdistance:dmin

=4 h(X)=1+X+X3 g(X)=1+X+X2+X4

initialstate:001outputsequence:111010055Figure10.12

Encoderforthe(7,3)maximal-lengthcode;theinitialstateoftheencoderisshowninthefigure.5610.4CyclicCodes

Cyclicredundancycheck(CRC)codeswell-suitedfor

errordetectioncandetectmanycombinationsoflikelyerrorseasyimplementationofbothencodinganderror-detectingcommonlyusedinautomatic-repeatrequest(ARQ)strategiesdigitalsubscriberlines5710.4CyclicCodes

Cyclicredundancycheck(CRC)codeserrorpatternsthatbinary(n,k)CRCcodescandetectAllerrorburstsoflengthn-korless.Afractionoferrorburstsoflengthequalton-k+1;thefractionequals1-2-(n-k-1).Afractionoferrorburstsoflengthgreaterthann-k+1;thefractionequals1-2-(n-k-1).Allcombinationsofdmin-1(orfewer)errors.Allerrorpatternswithanoddnumberoferrorsifthegeneratorpolynomialg(X)forthecodehasanevennumberofnonzerocoefficients.5810.4CyclicCodes

Bose-Chaudhuri-Hocquenghem(BCH)codest-errorcorrectingcycliccodes(candetect&correctuptotrandomerrorpercodeword)offerflexibilityinthechoiceofcodeparameters(blocklength&coderate)beamongthebestknowncodethesameblocklengthandcoderatePrimitiveBCHcodesBlocklength: n=2m-1

(m≥3)Numberofmessagebits: k≥n-mtMinimumdistance: dmin

≥2t+1Maximumnumberofdetectableerrors:t

5910.4CyclicCodes

Reed-Solomon(RS)codessubclassofnonbinaryBCHcodest-error-correctingRScodesBlocklength:n=2m-1

symbolsMessagesize:ksymbolsParity-checksize:n-k=2tsymbolsMinimumdistance:dmin

=2t+1symbols6010.4CyclicCodes

ReasonsforwideapplicationofRScodesmakehighlyefficientuseofredundancyblocklengthsandsymbolsizescanbeadjustedtoaccommodateawiderangeofmessagesizesprovideawiderangeofcoderatesefficientdecodingtechniquesareavailableforuse6110.5ConvolutionalCodesCharacteristic:messagebitscomeinseriallyratherthaninlargeblocksencodergeneratesredundantbitbyusingmodulo-2convolutionsrate1/n

convolutionalencoderconsistsof:anM-stageshiftregisternmodulo-2addersamultiplexerserializestheoutputsoftheaddersconstraintlengthK=M+162Figure10.13

(a)Constraintlength-3,rate-convolutionalencoder.(b)Constraintlength-2,rate-convolutionalencoder.*Theuseofnonsystematiccodesisordinarilypreferredoversystematiccodesinconvolutionalcoding.6310.5ConvolutionalCodesGeneratorpolynomial

(10.55)

whereD---theunit-delayvariable

()---thegeneratorsequence,denotethe impulseresponseoftheithpath.Here,theimpulseresponsemeanstheconnectionbetweentheoutputandtheinputofaconvolutionalencoder.1ifaconnectionexistsbetweentheithoutputandthej-stagedelayoftheinput

0otherwise6410.5ConvolutionalCodesExample10.5(Fig.10.13a)generatorpolynomial(path1&path2)messagepolynomialforsequence(10011)outputpolynomial(path1&path2)encodedsequenceNote:

ThemessagesequenceoflengthLproducesan encodedsequenceoflengthn(L+K-1).

Aterminatingsequenceof(K-1)zerosisappendedtothelastinputbitofthemessagesequence,inordertorestoretheshiftregistertoitszeroinitialstate.6510.5ConvolutionalCodesGraphicalformstoportraythestructuralproperties(orinput-outputrelation)ofaconvolutionalencoderCodeTree(Fig.10.14)Note:Thetreebecomesrepetitiveafterthefirst Kbranches.Trellis(Fig.10.15)StateDiagram(Fig.10.16)66Figure10.14

CodetreefortheconvolutionalencoderofFigure10.13a.67Figure10.15

TrellisfortheconvolutionalencoderofFigure10.13a.68Figure10.16

(a)AportionofthecentralpartofthetrellisfortheencoderofFigure10.13a.(b)StatediagramoftheconvolutionalencoderofFigure10.13a.6910.6MaximumLikelihoodDecodingofConvolutionalCodesTask:decoding--Giventhereceivedvector

r,makeanestimateofthemessagevector.Method:mone-to-onecorrespondencec(messagevector)(transmittedcodevector)putifandonlyifDecodingrule:

minimizetheprobabilityofdecodingerror(optimumrule).7010.6MaximumLikelihoodDecodingofConvolutionalCodesTheoryofmaximumlikelihooddecodingForequiprobablemessages,theprobabilityofdecodingerrorisminimizediftheestimateischosentomaximizethelog-likelihoodfunction.Decisionrule:

Choosetheestimateforwhichthelog-likelihoodfunctionlogp(r|c)ismaximum. (10.56)wherep(r|c)--conditionalprobability7110.6MaximumLikelihoodDecodingofConvolutionalCodes

Forbinarysymmetricchannel,r&carebinarysequencesoflengthN.

p(r|c)= (10.57)so

logp(r|c)= (10.58)where

(10.59)logp(r|c)=dlogp+(N-d)log(1-p) =dlog[p/(1-p)]+Nlog(1-p)(10.60)

whered

istheHammingdistancebetweenrandc.

p(ri|ci)

=

pifri≠ci1-p

ifri=ci

7210.6MaximumLikelihoodDecodingofConvolutionalCodesMaximumlikelihooddecodingruleforBSC

logp(r|c)=dlog[p/(1-p)]+Nlog(1-p)Forp<1/2,log[p/(1-p)]andlog(1-p)arenegative.Sothedecisionruleis:ChoosetheestimatethatminimizestheHammingdistancebetweenthereceivedvectorrandthetransmittedvectorc.

(10.61)maximumlikelihooddecoder→minimumdistancedecoder7310.6.1TheViterbiAlgorithmTheViterbialgorithm–maximumlikelihoodsequenceestimator(MLSE)

Itisanefficientalgorithmforpracticalimplementationofthemaximumlikelihooddecoding.Wemaydecodeaconvolutionalcodebychoosingapathinthecodetrelliswhosecodedsequencediffersfromthereceivedsequenceinthefewestnumberofplaces.7410.6.1TheViterbiAlgorithm

Codetrellisfor(n,k,K)

convolutionalcode2k(K-1)nodesinthetrellis2kbranchesdepartingeachnodeinthetrellisatlevelj≥K,2kpathsenteringanyofthenodesinthetrellis7510.6.1TheViterbiAlgorithmTheViterbialgorithm

Initialization

Labeltheleft-moststateofthetrellis(i.e.,theall-zerostateatlevel0)as0.Computationstepj+1

Letj=0,1,2,...,andsupposethatatthepreviousstepjwehavedonetwothings:Allsurvivorpathsareidentified.Thesurvivorpathanditsmetricforeachstateofthetrellisarestored.7610.6.1TheViterbiAlgorithmTheViterbialgorithm(cont.)Then,atlevelj+1,computethemetricforallthepathsenteringeachstateofthetrellisbyaddingthemetricoftheincomingbranchestothemetricoftheconnectingsurvivorpathformleveljforeachstate,identifythepathwiththelowestmetricasthesurvivorofstepj+1,therebyupdatingthecomputationFinalstep

Continuethecomputationuntilthealgorithmcompletesitsforwardsearchandreachestheterminationnode(i.e.,all-zerostate).7710.6.1TheViterbiAlgorithmDecodingwindow Whenthereceivedsequenceisverylong,adecodingwindowoflengthlisspecified,andthealgorithmoperatesonacorrespondingframeofthereceivedsequence,alwaysstoppingafterlsteps.Adecisionisthenmadeonthe"best"pathandthesymbolassociatedwiththebranchonthatpathisreleasedtouser.Next,thedecodingwindowismovedforwardonetimeinterval,andadecisiononthenextcodeframeismade,andsoon.7810.6.1TheViterbiAlgorithmExample10.6CorrectDecodingofReceivedAll-ZeroSequence

Encoder: Fig.10.13aTransmittedsequence:all-zerosequenceReceivedsequence:(0100010000...)

Decoder(Viterbialgorithm):Fig.10.1779Figure10.17

IllustratingstepsintheViterbialgorithmforExample10.6.8010.6.1TheViterbiAlgorithmExample10.7IncorrectDecodingofReceivedAll-ZeroSequence

Encoder: Fig.10.13aTransmittedsequence:all-zerosequenceReceivedsequence:(1100010000...)

Decoder(Viterbialgorithm):Fig.10.1881Figure10.18

IllustratingbreakdownoftheViterbialgorithminExample10.7.8210.6.2FreeDistanceofaConvolutionalCodeWhy?Thefreedistanceisthemostimportantsinglemeasureofaconvolutionalcode’sabilitytocombatchannelnoise.Definition

Thefreedistance(dfree)isdefinedastheminimumHammingdistancebetweenanytwocodewordsinthecode.Itcanbeobtainedquitesimplyfromthestatediagramoftheconvolutionalencoder.8310.6.2FreeDistanceofaConvolutionalCodeConsideranexample encoder: Fig.10.13a statediagram: Fig.10.16b signal-flowgraph(modifiedstatediagram:) Fig.10.19signal-flowgraphconsistsof:asingleinput&asingleoutputnodes&directedbranches84Figure10.19

Modifiedstatediagramofconvolutionalencoder.D,L--dummyvariablesexponentofD--HammingweightoftheencoderoutputexponentofL--lengthofeachbranch(alwaysequaltoone)8510.6.2FreeDistanceofaConvolutionalCodeOperatingrulesofasignal-flowgraphAbranchmultipliesthesignalatitsinputnodebythetransmittancecharacterizingthatbranch.Anodewithincomingbranchessumsthesignalsproducedbyallofthosebranches.Thesignalatanodeisappliedequallytoallthebranchesoutgoingfromthatnode.Thetransferfunctionofthegraphistheratiooftheoutputsignaltotheinputsignal.8610.6.2FreeDistanceofaConvolutionalCodeInput-outputrelationsinFig.10.19

b=D2La0+Lc c=DLb+DLd d=DLb+DLd a1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论