版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter10
Error-ControlCodingProblems:(pp.696-702)10.410.7
10.1210.15
10.1710.2510.271Chapter10
Error-ControlCoding10.1Introduction10.2Discrete-MemorylessChannels10.3LinearBlockCodes10.4CyclicCodes10.5ConvolutionalCodes10.6MaximumLikelihoodDecodingofConvolutionalCodes10.7Trellis-CodedModulation10.8Turbo
Codes10.9ComputerExperiment:TurboDecoding10.10Low-DensityParity_CheckCodes10.11IrregularCodes10.12SummaryandDiscussion2第十章纠错控制编码10.1引言10.2离散无记忆信道10.3线性分组码10.4循环码10.5卷积码10.6卷积码的最大似然译码10.7网格编码调制10.8Turbo码10.9计算机实验:Turbo码的译码10.10低密度奇偶校验码10.11不规则码10.12总结与讨论3Chapter10
Error-ControlCodingTopics:Error-controlcoding---ChannelcodingImportantcodesLinearblockcodes(Cycliccodes)ConvolutionalcodesCompoundcodes(turbocodes,low-densityparity-checkcodes&irregularcodes)
410.1Introduction
Task
---transmittinginformation arate(velocity) at alevelofreliability(quality)Whyerror-controlcoding?
ForafixedEb/N0,itistheonlypracticaloption
availableforchangingdataqualityfromproblematictoacceptable.510.1Introduction
Systemparameters:transmittedsignalpowerchannelbandwidth+
powerspectraldensityofreceivernoiseSignalenergyperbit/noisepowerspectraldensity(Eb/N0)biterrorrateerrorcontrolcoding(ForfixedEb/N0)(ForfixedBER)Reducetransmittedpowerorhardwarecosts6Figure10.1
Simplifiedmodelsofdigitalcommunicationsystem.(a)Codingandmodulationperformedseparately.(b)Codingandmodulationcombined.710.1Introduction
Infig.10.1a,channelcodingandmodulationareperformedseparately.Infig.10.1b,channelcodingandmodulationarecombined(TCM).--->bandwidthefficiencyisincreased810.1Introduction
Channelencoder--addsredundancyaccordingtoaprescribedruleChanneldecoder--exploittheredundancytodecideactuallytransmittedmessagebitsAdvantage--minimizetheeffectofchannelnoise(reducetheBER)Disadvantage--increasetransmissionbandwidthandsystemcomplexity
910.1Introduction
Classification:blockcodes--absenceofmemory
convolutionalcodes--presenceofmemory
(n,k)blockcode---(n-k)redundantbitscoderater=k/nchanneldatarateR0=(n/k)*Rs
(sourcedatarate)
(n,k,N)convolutionalcodetheinputsequencetheimpulseresponseof theencoder(duration=memoryoftheencoder N)--discretetimeconvolution
1010.1Introduction
FEC(Feed-forwarderrorcorrection)redundancyusedfordetection&correctionoferrorsinreceiver(channelcoding)one-waylink&decodingcomplexitywiderinapplicationARQ(automatic-repeatrequest)redundancyusedonlyfordetectionoferrorserror-->repeattransmissionhalf-duplexorfull-duplexlinks(feed-backchannel)computercommunicationsystems1110.1Introduction
TypesofARQstop-and-waitstrategy(half-duplexlink)continuousARQwithpullback(duplexlink)continuousARQwithselectiverepeat(duplexlink)TheabovethreetypesofARQoffertrade-offbetweentheneedforahalf-duplexorfull-duplexlinkanddatathroughout.1210.2Discrete-MemorylessChannels
Memorylesswaveformchannel:thedetectoroutputinagivenintervaldependsonlyonethesignaltransmittedinthatinterval(seefig.10.1a)Discretememorylesschannel:themodulator+thewaveformchannel+thedetectorTransitionprobabilitiesp(j|i)describeadiscretememorylesschannelcompletely1310.2Discrete-MemorylessChannels
BinarysymmetricchannelFigure10.2Transitionprobabilitydiagramofbinarysymmetricchannel.1410.2Discrete-MemorylessChannels
Harddecisiondecoder--algebraicdecodersimplicityofimplementationirreversiblelossofinformationSoftdecisiondecoder--probabilisticdecodercomplicatestheimplementationofferssignificantimprovementinperformance15Figure10.3BinaryinputQ-aryoutputdiscretememorylesschannel.
(a)Receiverforbinaryphase-shiftkeying.(b)Transfercharacteristicofmultilevelquantizer.(c)Channeltransitionprobabilitydiagram.Parts(b)and(c)areillustratedforeightlevelsof
quantization.1610.2Discrete-MemorylessChannelsChannelcodingtheoremrevisitedChannelcapacity:maximumamountofinfor-mationtransmittedperchanneluse(inchapter9)Channelcodingtheorem:ifR(rateofsourceinformation)≤C(capacityofadiscretememorylesschannel),thenthereexistsacodingtechniquesuchthattheoutputofsourcemaybetransmittedoverthechannelwithanarbitrarilylowprobabilityofsymbolerror(Pe->0.)1710.2Discrete-MemorylessChannelsChannelcodingtheoremrevisited(cont.)Channelcodingtheoremexistenceofgoodcodesnon-constructiveerror-controlcodingtechniques:providedifferentmethodsofdesigninggoodcodesNotation
modulo-2addition--EXCLUSIVEORoperationmodulo-2multiplication--ANDoperation1810.3LinearBlockCodes
Definitionoflinearcode:
ifanytwocodewordsinthecodecanbeaddedinmodulo-2arithmetictoproduceathirdcodewordinthecode.(封闭性)Systematiccode:
themessagebitsaretransmittedinunalteredform.Itsimplifiesimplementationofthedecoder.Figure10.4Structureofsystematiccodeword.1910.3LinearBlockCodes
(n,k)linearblockcode :ncodebits :kmessagebits :(n-k)paritybits,whicharecomputedfromthemessagebitsaccordingtoaprescribedencodingrule2010.3LinearBlockCodes
Mathematicalstructurebii=0,1,..,n-k-1
mi+k-n
i=n-k,n-k+1,..,n-1
ci
=bi=p0im0+p1im1+..+pk-1,imk-1where
pji=1ifbidependsonmj
0
otherwise(10.2)(10.3)(10.1)2110.3LinearBlockCodes
Matrixformm=[m0,m1,..,mk-1]b=[b0,b1,..,bn-k-1]c=[c0,c1,..,cn-1]b=mPp00p01..p0,n-k-1p10p11..p1,n-k-1pk-1,0pk-1,1..pk-1,n-k-1P=(10.4)(10.5)(10.6)(10.7)(10.8)2210.3LinearBlockCodes
Matrixform(cont.)Fromtheequationsin(10.4)-(10.6),cmaybeexpressedasfollows:c=[b|m]
=m[P|
Ik] =mG
WhereGisthek-by-ngeneratormatrix
G=[P|Ik]
where
Ik
isthe
k-by-kidentitymatrix.
G’skrowsarelinearlyindependent.(10.13)(10.10)(10.9)(10.12)2310.3LinearBlockCodes
Matrixform(cont.)LetHdenotethe(n-k)-by-nparity-checkmatrixH=[In-k|PT]
(10.14)H’s(n-k)rowsarelinearlyindependent.Wegetparity-checkequationasfollows:cHT
=
mGHT
=
0(10.16)24Figure10.5Blockdiagramrepresentationsofthegeneratorequation(10.13)andtheparity-checkequation(10.16).usedintheencodingoperationatthetransmitterusedinthedecodingoperationatthereceiver2510.3LinearBlockCodes
Example10.1RepetitionCodes(n,1)blockcodetwocodewordsinthecode:all-zerocodeword&all-onecodewordForn=5,thegeneratormatrixisG=[1111|1]Theparity-checkmatrixisH=100010100100101000112610.3LinearBlockCodes
Syndrome:DefinitionandPropertiesLetrdenotethe1-by-nreceivedvector,weexpressthevectorrasr=c+e(10.17)Wherec--theoriginalcodevector
e--theerrorvectororerrorpattern.
ei
=
1ifanerrorhasoccurredintheithlocation0otherwise(10.18)2710.3LinearBlockCodes
Syndrome(cont.)DefinitionTheerror-syndromevector(or
syndrome)is
definedas:
s=rHT
(10.19)Property1Thesyndromedependsonlyontheerrorpattern,andnotonthetransmittedcodeword.
s=eHT
(10.20)2810.3LinearBlockCodes
Syndrome(cont.)Property2
Allerrorpatternsthatdifferbyacodewordhavethesamesyndrome.
Wedefinethe2kdistinctvectorsei
as
ei
=
e+
ci
(10.21)WegeteiHT=eHT
(10.22)Cosetofthecode--thesetofvectors{ei,i=0,1,..,2k-1}2910.3LinearBlockCodes
Syndrome(cont.)FromEqu.(10.22),weget
s=eHT
=eiHT
Sotheinformationcontainedinthesyndromesabouttheerrorpatterneisnotenoughforthedecodertocomputetheexactvalueofthetransmittedcodevector.Nevertheless,knowledgeofthesyndromesreducesthesearchforthetrueerrorpatternefrom2nto
2n-kpossibilities.3010.3LinearBlockCodes
MinimumdistanceconsiderationsHammingdistanced(c1,c2)--thenumberoflocationsinwhichtheirrespectiveelementsdifferHammingweightw(c)--thenumberofnonzeroelementsinthecodevectorminimumdistance
dmin
--thesmallesthammingdistancebetweenanypairofcodevectorsinthecodeminimumdistancedmin
=smallestHammingweightofthenonzerocodevectors3110.3LinearBlockCodes
Minimumdistanceconsiderations(cont.)relationbetweentheminimumdistancedmin
andtheparity-checkmatrixH
ExpressthematrixHintermsofitscolumns
H=[h1,h2,..,hn]Andacodevectorcsatisfytheequation
HcT
=
0→dmin≤n-k+1Hence,theminimumdistanceofalinearblockcodeisdefinedbytheminimumnumberofcolumnsofthematrixH(orrowsofthematrixHT)
whosesumisequaltothezerovector.3210.3LinearBlockCodes
relationbetweentheminimumdistancedmin
andtheerror-correctingcapabilityofthecodestrategy
forthedecoder--pickthecodevectorclosesttothereceivedvectorr.DetectallerrorpatternsofHammingweightw(e)≤t1 ifandonlyif dmin≥t1+1CorrectallerrorpatternsofHammingweightw(e)≤t2ifandonlyifdmin≥2t2+1DetectallerrorpatternsofHammingweightw(e)≤t1,andcorrectallerrorpatternsofHammingweightw(e)≤t2 ifandonlyif dmin≥t1+t2+1(t1>t2)33Figure10.6
(a)Hammingdistanced(ci,cj)2t1.(b)Hammingdistanced(ci,cj)2t.Thereceivedvectorisdenotedbyr.3410.3LinearBlockCodes
Sputethesyndromes=rHT
2.accordingtos,identifythecosetleader,putethecodevector
c
=
r+
e0as
thedecodedversionofthereceivedvectorrNote:
eachcosetleaderhastheminimumHammingweightinitscoset
35Figure10.7
Standardarrayforan(n,k)blockcode.SubsetD1D2D2kcosetCosetleader3610.3LinearBlockCodes
Example10.2HammingCodesBlocklength:n=2m-1(m≥3)Numberofmessagebits:k=2m-1-mNumberofparitybits:m=n-kminimumdistance:dmin
=
3generatormatrixparity-checkmatrixrelationbetweentheminimumdistancedminandtheparity-checkmatrixHsyndromedecoding3710.3LinearBlockCodes
DualCode
Every
(n,k)linearblockcodewithgeneratormatrix
Gandparity-checkmatrix
Hhasadualcodewithparameters(n,n-k),
generatormatrix
Handparity-checkmatrix
G.3810.4CyclicCodes
asubclassoflinearblockcodeseasytoencodepossessawell-definedmathematicalstructureefficientdecodingschemestwofundamentalproperties:linearitypropertycyclicproperty3910.4CyclicCodes
Codepolynomial
c(X)=
c0+c1X+c2X2+...+cn-1Xn-1
(10.27)whereXisanindeterminate.Forbinarycodes,thecoefficientsci
are1sand0s.Multiplicationofthepolynomialc(X)byXmaybeviewedasashifttotheright.Lemma:
Ifc(X)isacycliccodepolynomial,thenthepolynomial
c(i)(X)=Xic(X)mod(Xn+1)
(10.33)isalsoacodepolynomialforanycyclicshifti.4010.4CyclicCodes
Generatorpolynomial
g(X)=
1+g1X+g2X2+...+gn-k-1Xn-k-1+Xn-k
(10.34)wherethecoefficientsgi
isequalto1or0.
Note:Acycliccodeisuniquelydeterminedbythegeneratorpolynomialg(X).g(X)isapolynomialofdegree(n-k)(thepolynomialofleastdegreeinthecode).g(X)isafactorof(Xn+1).4110.4CyclicCodes
Encodingprocedureforan(n,k)systematiccycliccode1.Multiplythemessagepolynomialm(X)byXn-k
.
m(X)=
m0+m1X+...+mk-1Xk-1
(10.36)2.DivideXn-k
m(X)
bythegeneratorpolynomialg(X),obtainingtheremainderb(X).3.Addb(X)toXn-k
m(X)
,obtainingthecodepolynomialc(X).
c(X)=b(X)+Xn-k
m(X)
4210.4CyclicCodes
Parity-checkPolynomial
(10.40)wherethecoefficientshi
are1or0.
Note:Acycliccodeisalsouniquelyspecifiedbythegeneratorpolynomialh(X).h(X)isapolynomialofdegreek.h(X)isalsoafactorof(Xn+1)anditsatisfies
g(X)h(X)=Xn
+1
(10.42)4310.4CyclicCodes
GeneratorandParity-checkMatricesGeneratormatrixP arity-checkmatrix
4410.4CyclicCodes
EncoderforcycliccodesEncodingprocedureforan(n,k)systematiccycliccode
1.multiplicationofthemessagepolynomialm(X)byXn-k
2.divisionofXn-k
m(X)
bythegeneratorpolynomialg(X)toobtaintheremainderb(X)3.additionofb(X)toXn-k
m(X) ThesethreestepscanbeimplementedbymeansoftheencodershowninFig.10.8,consistingofalinearfeedbackshiftregisterwith(n-k)stages.45Figure10.8
Encoderforan(n,k)cycliccode.4610.4CyclicCodes
Encoderforcycliccodes(cont.)
TheoperationoftheencodershowninFig.10.8proceedsasfollows:Thegateisswitchedon.Hence,thekmessagebitsareshiftedintothechannel.Assoonasthekmessagebitshaveenteredtheshiftregister,theresulting(n-k)bitsintheregisterformtheparitybits.Thegateisswitchedoff,therebybreakingthefeedbackconnections.Thecontentsoftheshiftregisterarereadoutintothechannel.4710.4CyclicCodes
Calculationofthesyndrome
Letthereceivedwordberepresentedbyapolynomialasfollows:r(X)=
r0+r1X+...+rn-1Xn-1
(10.46)
andr(X)maybeexpressedas:
r(X)=q(X)g(X)+s(X)
(10.47)whereq(X)denotesthequotientands(X)denotesthesyndromepolynomial(remainder,degree≤n-k-1).Fig.10.9showsasyndromecalculator.(identicaltotheencoderofFig.10.8)48Figure10.9
Syndromecalculatorfor(n,k)cycliccode.4910.4CyclicCodes
Propertiesofthesyndromepolynomial1.Thesyndromeofareceivedwordpolynomialisalsothesyndromeofthecorrespondingerrorpolynomial.2.Lets(X)bethesyndromeofareceivedwordpolynomialr(X).Then,thesyndromeofXr(X),acyclicofr(X),isXs(X)(modg(X)).3.Thesyndromepolynomials(X)isidenticalto(=)theerrorpolynomiale(X),assumingthattheerrorsareconfinedtothe(n-k)parity-checkbitsofthereceivedwordpolynomialr(X).5010.4CyclicCodes
Example10.3Hammingcodesrevisited
(7.4)cycliccodegeneratorpolynomialparity-checkpolynomialconstructionofacodewordinsystematicformgeneratormatrixparity-checkmatrixencoder(Fig.10.10)syndromecalculator(Fig.10.11)*AnycycliccodegeneratedbyaprimitivepolynomialisaHammingcodeofminimumdistance3.
51Figure10.10
Encoderforthe(7,4)cycliccodegeneratedbyg(X)1X
X3.52Figure10.11
Syndromecalculatorforthe(7,4)cycliccodegeneratedbythepolynomialg(X)1X
X3.5310.4CyclicCodes
Example10.4Maximal-Lengthcodes
Blocklength: n=2m-1
(m≥3)Numberofmessagebits:k=mMinimumdistance: dmin
=2m-1Generatorpolynomial
g(X)=(Xn
+1)/h(X) (10.52)whereh(X)isanyprimitivepolynomialofdegreem.*Maximal-lengthcodesarethedualofHammingcodes.Thepolynomialh(X)definesthefeedbackconnectionsoftheencoder.Thegeneratorpolynomialg(X)definesoneperiodofthemaximal-lengthcode,assumingtheinitialstateis00...01.5410.4CyclicCodes
Example10.4Maximal-Lengthcodes
(7,3)maximal-lengthcode--dualofthe(7,4)HammingcodeBlocklength:n=7
Numberofmessagebits:k=3Minimumdistance:dmin
=4 h(X)=1+X+X3 g(X)=1+X+X2+X4
initialstate:001outputsequence:111010055Figure10.12
Encoderforthe(7,3)maximal-lengthcode;theinitialstateoftheencoderisshowninthefigure.5610.4CyclicCodes
Cyclicredundancycheck(CRC)codeswell-suitedfor
errordetectioncandetectmanycombinationsoflikelyerrorseasyimplementationofbothencodinganderror-detectingcommonlyusedinautomatic-repeatrequest(ARQ)strategiesdigitalsubscriberlines5710.4CyclicCodes
Cyclicredundancycheck(CRC)codeserrorpatternsthatbinary(n,k)CRCcodescandetectAllerrorburstsoflengthn-korless.Afractionoferrorburstsoflengthequalton-k+1;thefractionequals1-2-(n-k-1).Afractionoferrorburstsoflengthgreaterthann-k+1;thefractionequals1-2-(n-k-1).Allcombinationsofdmin-1(orfewer)errors.Allerrorpatternswithanoddnumberoferrorsifthegeneratorpolynomialg(X)forthecodehasanevennumberofnonzerocoefficients.5810.4CyclicCodes
Bose-Chaudhuri-Hocquenghem(BCH)codest-errorcorrectingcycliccodes(candetect&correctuptotrandomerrorpercodeword)offerflexibilityinthechoiceofcodeparameters(blocklength&coderate)beamongthebestknowncodethesameblocklengthandcoderatePrimitiveBCHcodesBlocklength: n=2m-1
(m≥3)Numberofmessagebits: k≥n-mtMinimumdistance: dmin
≥2t+1Maximumnumberofdetectableerrors:t
5910.4CyclicCodes
Reed-Solomon(RS)codessubclassofnonbinaryBCHcodest-error-correctingRScodesBlocklength:n=2m-1
symbolsMessagesize:ksymbolsParity-checksize:n-k=2tsymbolsMinimumdistance:dmin
=2t+1symbols6010.4CyclicCodes
ReasonsforwideapplicationofRScodesmakehighlyefficientuseofredundancyblocklengthsandsymbolsizescanbeadjustedtoaccommodateawiderangeofmessagesizesprovideawiderangeofcoderatesefficientdecodingtechniquesareavailableforuse6110.5ConvolutionalCodesCharacteristic:messagebitscomeinseriallyratherthaninlargeblocksencodergeneratesredundantbitbyusingmodulo-2convolutionsrate1/n
convolutionalencoderconsistsof:anM-stageshiftregisternmodulo-2addersamultiplexerserializestheoutputsoftheaddersconstraintlengthK=M+162Figure10.13
(a)Constraintlength-3,rate-convolutionalencoder.(b)Constraintlength-2,rate-convolutionalencoder.*Theuseofnonsystematiccodesisordinarilypreferredoversystematiccodesinconvolutionalcoding.6310.5ConvolutionalCodesGeneratorpolynomial
(10.55)
whereD---theunit-delayvariable
()---thegeneratorsequence,denotethe impulseresponseoftheithpath.Here,theimpulseresponsemeanstheconnectionbetweentheoutputandtheinputofaconvolutionalencoder.1ifaconnectionexistsbetweentheithoutputandthej-stagedelayoftheinput
0otherwise6410.5ConvolutionalCodesExample10.5(Fig.10.13a)generatorpolynomial(path1&path2)messagepolynomialforsequence(10011)outputpolynomial(path1&path2)encodedsequenceNote:
ThemessagesequenceoflengthLproducesan encodedsequenceoflengthn(L+K-1).
Aterminatingsequenceof(K-1)zerosisappendedtothelastinputbitofthemessagesequence,inordertorestoretheshiftregistertoitszeroinitialstate.6510.5ConvolutionalCodesGraphicalformstoportraythestructuralproperties(orinput-outputrelation)ofaconvolutionalencoderCodeTree(Fig.10.14)Note:Thetreebecomesrepetitiveafterthefirst Kbranches.Trellis(Fig.10.15)StateDiagram(Fig.10.16)66Figure10.14
CodetreefortheconvolutionalencoderofFigure10.13a.67Figure10.15
TrellisfortheconvolutionalencoderofFigure10.13a.68Figure10.16
(a)AportionofthecentralpartofthetrellisfortheencoderofFigure10.13a.(b)StatediagramoftheconvolutionalencoderofFigure10.13a.6910.6MaximumLikelihoodDecodingofConvolutionalCodesTask:decoding--Giventhereceivedvector
r,makeanestimateofthemessagevector.Method:mone-to-onecorrespondencec(messagevector)(transmittedcodevector)putifandonlyifDecodingrule:
minimizetheprobabilityofdecodingerror(optimumrule).7010.6MaximumLikelihoodDecodingofConvolutionalCodesTheoryofmaximumlikelihooddecodingForequiprobablemessages,theprobabilityofdecodingerrorisminimizediftheestimateischosentomaximizethelog-likelihoodfunction.Decisionrule:
Choosetheestimateforwhichthelog-likelihoodfunctionlogp(r|c)ismaximum. (10.56)wherep(r|c)--conditionalprobability7110.6MaximumLikelihoodDecodingofConvolutionalCodes
Forbinarysymmetricchannel,r&carebinarysequencesoflengthN.
p(r|c)= (10.57)so
logp(r|c)= (10.58)where
(10.59)logp(r|c)=dlogp+(N-d)log(1-p) =dlog[p/(1-p)]+Nlog(1-p)(10.60)
whered
istheHammingdistancebetweenrandc.
p(ri|ci)
=
pifri≠ci1-p
ifri=ci
7210.6MaximumLikelihoodDecodingofConvolutionalCodesMaximumlikelihooddecodingruleforBSC
logp(r|c)=dlog[p/(1-p)]+Nlog(1-p)Forp<1/2,log[p/(1-p)]andlog(1-p)arenegative.Sothedecisionruleis:ChoosetheestimatethatminimizestheHammingdistancebetweenthereceivedvectorrandthetransmittedvectorc.
(10.61)maximumlikelihooddecoder→minimumdistancedecoder7310.6.1TheViterbiAlgorithmTheViterbialgorithm–maximumlikelihoodsequenceestimator(MLSE)
Itisanefficientalgorithmforpracticalimplementationofthemaximumlikelihooddecoding.Wemaydecodeaconvolutionalcodebychoosingapathinthecodetrelliswhosecodedsequencediffersfromthereceivedsequenceinthefewestnumberofplaces.7410.6.1TheViterbiAlgorithm
Codetrellisfor(n,k,K)
convolutionalcode2k(K-1)nodesinthetrellis2kbranchesdepartingeachnodeinthetrellisatlevelj≥K,2kpathsenteringanyofthenodesinthetrellis7510.6.1TheViterbiAlgorithmTheViterbialgorithm
Initialization
Labeltheleft-moststateofthetrellis(i.e.,theall-zerostateatlevel0)as0.Computationstepj+1
Letj=0,1,2,...,andsupposethatatthepreviousstepjwehavedonetwothings:Allsurvivorpathsareidentified.Thesurvivorpathanditsmetricforeachstateofthetrellisarestored.7610.6.1TheViterbiAlgorithmTheViterbialgorithm(cont.)Then,atlevelj+1,computethemetricforallthepathsenteringeachstateofthetrellisbyaddingthemetricoftheincomingbranchestothemetricoftheconnectingsurvivorpathformleveljforeachstate,identifythepathwiththelowestmetricasthesurvivorofstepj+1,therebyupdatingthecomputationFinalstep
Continuethecomputationuntilthealgorithmcompletesitsforwardsearchandreachestheterminationnode(i.e.,all-zerostate).7710.6.1TheViterbiAlgorithmDecodingwindow Whenthereceivedsequenceisverylong,adecodingwindowoflengthlisspecified,andthealgorithmoperatesonacorrespondingframeofthereceivedsequence,alwaysstoppingafterlsteps.Adecisionisthenmadeonthe"best"pathandthesymbolassociatedwiththebranchonthatpathisreleasedtouser.Next,thedecodingwindowismovedforwardonetimeinterval,andadecisiononthenextcodeframeismade,andsoon.7810.6.1TheViterbiAlgorithmExample10.6CorrectDecodingofReceivedAll-ZeroSequence
Encoder: Fig.10.13aTransmittedsequence:all-zerosequenceReceivedsequence:(0100010000...)
Decoder(Viterbialgorithm):Fig.10.1779Figure10.17
IllustratingstepsintheViterbialgorithmforExample10.6.8010.6.1TheViterbiAlgorithmExample10.7IncorrectDecodingofReceivedAll-ZeroSequence
Encoder: Fig.10.13aTransmittedsequence:all-zerosequenceReceivedsequence:(1100010000...)
Decoder(Viterbialgorithm):Fig.10.1881Figure10.18
IllustratingbreakdownoftheViterbialgorithminExample10.7.8210.6.2FreeDistanceofaConvolutionalCodeWhy?Thefreedistanceisthemostimportantsinglemeasureofaconvolutionalcode’sabilitytocombatchannelnoise.Definition
Thefreedistance(dfree)isdefinedastheminimumHammingdistancebetweenanytwocodewordsinthecode.Itcanbeobtainedquitesimplyfromthestatediagramoftheconvolutionalencoder.8310.6.2FreeDistanceofaConvolutionalCodeConsideranexample encoder: Fig.10.13a statediagram: Fig.10.16b signal-flowgraph(modifiedstatediagram:) Fig.10.19signal-flowgraphconsistsof:asingleinput&asingleoutputnodes&directedbranches84Figure10.19
Modifiedstatediagramofconvolutionalencoder.D,L--dummyvariablesexponentofD--HammingweightoftheencoderoutputexponentofL--lengthofeachbranch(alwaysequaltoone)8510.6.2FreeDistanceofaConvolutionalCodeOperatingrulesofasignal-flowgraphAbranchmultipliesthesignalatitsinputnodebythetransmittancecharacterizingthatbranch.Anodewithincomingbranchessumsthesignalsproducedbyallofthosebranches.Thesignalatanodeisappliedequallytoallthebranchesoutgoingfromthatnode.Thetransferfunctionofthegraphistheratiooftheoutputsignaltotheinputsignal.8610.6.2FreeDistanceofaConvolutionalCodeInput-outputrelationsinFig.10.19
b=D2La0+Lc c=DLb+DLd d=DLb+DLd a1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年重庆市甘孜藏族自治州单招职业适应性测试必刷测试卷及答案1套
- 2026年曲阜远东职业技术学院单招职业倾向性测试必刷测试卷新版
- 2026年惠州卫生职业技术学院单招职业技能测试必刷测试卷附答案
- 2026年西宁城市职业技术学院单招职业倾向性测试必刷测试卷及答案1套
- 2026年哈尔滨铁道职业技术学院单招职业适应性测试题库新版
- 2026年苏州经贸职业技术学院单招职业技能考试必刷测试卷附答案
- 2026年山西警官职业学院单招综合素质考试必刷测试卷附答案
- 2026年苏州工业园区职业技术学院单招职业适应性测试必刷测试卷附答案
- 2026年吉林职业技术学院单招综合素质考试题库新版
- 2026年朝阳师范高等专科学校单招职业适应性测试题库附答案
- 消防设施操作员基础知识课件
- 康熙字典汉字大全及字义解释(按笔画分类)
- 2022危险性较大的分部分项工程安全管理实施细则
- 巡检记录表巡检记录表
- 2023年度青春期家庭教育调查报告
- 音乐生职业生涯规划书
- GB/T 23617-2009林业检疫性有害生物调查总则
- GB 17498.2-2008固定式健身器材第2部分:力量型训练器材附加的特殊安全要求和试验方法
- 安全员之A证(企业负责人)【含答案】
- 二年级硬笔书法教学课件
- 部编 二年级语文上册 第五单元【集体备课】课件
评论
0/150
提交评论