版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116° B.32° C.58° D.64°2.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.3.如图,在平面直角坐标系内,四边形ABCD为菱形,点A,B的坐标分别为(﹣2,0),(0,﹣1),点C,D分别在坐标轴上,则菱形ABCD的周长等于()A. B.4 C.4 D.204.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5 B.6 C.7 D.105.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>26.二次函数的图象向上平移个单位得到的图象的解析式为()A. B. C. D.7.如图:已知,且,则()A.5 B.3 C.3.2 D.48.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2 B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2 D.y=﹣3(x+1)2+29.如图,一次函数y=﹣x+3的图象与反比例函数y=﹣的图象交于A,B两点,则不等式|﹣x+3|>﹣的解集为()A.﹣1<x<0或x>4 B.x<﹣1或0<x<4C.x<﹣1或x>0 D.x<﹣1或x>410.如图,已知二次函数的图象与轴交于点(-1,0),与轴的交点在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线,下列结论不正确的是()A. B. C. D.11.下列函数中,图象不经过点(2,1)的是()A.y=﹣x2+5 B.y= C.y=x D.y=﹣2x+312.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70° B.80° C.110° D.140°二、填空题(每题4分,共24分)13.若点P(m,-2)与点Q(3,n)关于原点对称,则=______.14.如图,双曲线与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为______.15.如图,在边长为2的正方形中,动点,分别以相同的速度从,两点同时出发向和运动(任何一个点到达停止),在运动过程中,则线段的最小值为________.16.对于为零的两个实数a,b,如果规定:a☆b=ab-b-1,那么x☆(2☆x)=0中x值为____.17.定义:在平面直角坐标系中,我们将函数的图象绕原点逆时针旋转后得到的新曲线称为“逆旋抛物线”.(1)如图①,己知点,在函数的图象上,抛物线的顶点为,若上三点、、是、、旋转后的对应点,连结,、,则__________;(2)如图②,逆旋抛物线与直线相交于点、,则__________.18.若关于x的一元二次方程x2+2x+3k=0有两个不相等的实数根,则k的取值范围是_____.三、解答题(共78分)19.(8分)阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为连个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解;各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想——转化,即把未知转化为已知来求解.用“转化”的数学思想,我们还可以解一些新的方程.例如,解一元三次方程,通过因式分解把它转化为,通过解方程和,可得原方程的解.再例如,解根号下含有来知数的方程:,通过两边同时平方把它转化为,解得:.因为,且,所以不是原方程的根,是原方程的解.(1)问题:方程的解是,__________,__________;(2)拓展:求方程的解.20.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在线段BA上以每秒3cm的速度点A运动,同时动点N从点C出发,在线段CB上以每秒2cm的速度向点B运动,其中一点到达终点后,另一点也停止运动.运动时间为t秒,连接MN.(1)填空:BM=cm.BN=cm.(用含t的代数式表示)(2)若△BMN与△ABC相似,求t的值;(3)连接AN,CM,若AN⊥CM,求t的值.21.(8分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:EB=DC;(2)连接DE,若∠BED=50°,求∠ADC的度数.22.(10分)如图,已知BCAC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAOAMAP,连接OP.(1)证明:MD//OP;(2)求证:PD是⊙O的切线;(3)若AD24,AMMC,求的值.23.(10分)已知,反比例函数的图象经过点M(2,a﹣1)和N(﹣2,7+2a),求这个反比例函数解析式.24.(10分)已知是一张直角三角形纸片,其中,,小亮将它绕点逆时针旋转后得到,交直线于点.(1)如图1,当时,所在直线与线段有怎样的位置关系?请说明理由.(2)如图2,当,求为等腰三角形时的度数.25.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.(1)若苗圃的面积为72平方米,求x的值;(2)这个苗圃的面积能否是120平方米?请说明理由.26.(1)计算:(2)先化简,再求值:,其中m满足一元二次方程.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆周角定理求得:∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半)、∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°﹣∠AOD,∴∠BCD=32°.【详解】解:连接OD.∵AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,∴∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半);又∵∠BOD=180°﹣∠AOD,∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);∴∠BCD=32°;故答案为B.【点睛】本题主要考查了圆周角定理,理解同弧所对的圆周角是所对的圆心角的一半是解答本题的关键.2、A【解析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.3、C【分析】根据题意和勾股定理可得AB长,再根据菱形的四条边都相等,即可求出菱形的周长.【详解】∵点A,B的坐标分别为(﹣2,0),(0,﹣1),∴OA=2,OB=1,∴,∴菱形ABCD的周长等于4AB=4.故选:C.【点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.4、C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C5、D【分析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B两点关于原点对称,
∵点A的横坐标为1,∴点B的横坐标为-1,
∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
∴当y1>y1时,x的取值范围是-1<x<0或x>1.
故选:D.【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.6、B【分析】直接根据“上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,把二次函数y=x2的图象向上平移2个单位,得到的新图象的二次函数解析式是:y=x2+2.故答案选B.【点睛】本题考查了二次函数图象与几何变换,解题的关键是熟练的掌握二次函数图象与几何变换.7、C【分析】根据平行线分线段成比例定理列出比例式,代入数值进行计算即可.【详解】解:∵AD∥BE∥CF∴∵AB=4,BC=5,EF=4∴∴DE=3.2故选C【点睛】本题考查平行线分线段成比例定理,找准对应关系是解答此题的关键.8、C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=﹣3x1向左平移1个单位所得直线解析式为:y=﹣3(x+1)1;再向下平移1个单位为:y=﹣3(x+1)1﹣1,即y=﹣3(x+1)1﹣1.故选C.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.9、C【分析】先解方程组得A(﹣1,4),B(4,﹣1),然后利用函数图象和绝对值的意义可判断x<﹣1或x>1时,|﹣x+3|>﹣.【详解】解方程组得或,则A(﹣1,4),B(4,﹣1),当x<﹣1或x>1时,|﹣x+3|>﹣,所以不等式|﹣x+3|>﹣的解集为x<﹣1或x>1.故选:C.【点睛】考核知识点:一次函数与反比例函数.解方程组求函数图象交点是关键.10、D【分析】根据二次函数的图象和性质、各项系数结合图象进行解答.【详解】∵(-1,0),对称轴为∴二次函数与x轴的另一个交点为将代入中,故A正确将代入中②①∴∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴∴∴,故B正确;∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴抛物线顶点纵坐标∵抛物线开口向上∴∴,故C正确∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴将代入中①②∴∴,故D错误,符合题意故答案为:D.【点睛】本题主要考查了二次函数的图象与函数解析式的关系,可以根据各项系数结合图象进行解答.11、D【分析】根据题意分别计算出当时的各选项中的函数值,然后进一步加以判断即可.【详解】A:当x=2时,y=−4+5=1,则点(2,1)在抛物线y=−x2+5上,所以A选项错误;B:当x=2时,y==1,则点(2,1)在双曲线y=上,所以B选项错误;C:当x=2时,y=×2=1,则点(2,1)在直线y=x上,所以C选项错误;D:当x=2时,y=−4+3=−1,则点(2,1)不在直线y=−2x+3上,所以D选项正确.故选:D.【点睛】本题主要考查了函数图像上点的坐标的性质,熟练掌握相关概念是解题关键.12、C【解析】分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(每题4分,共24分)13、-1【分析】根据坐标的对称性求出m,n的值,故可求解.【详解】依题意得m=-3,n=2∴=故填:-1.【点睛】此题主要考查代数式求值,解题的关键是熟知直角坐标系的坐标特点.14、1.【详解】解:∵⊙O在第一象限关于y=x对称,也关于y=x对称,P点坐标是(1,3),∴Q点的坐标是(3,1),∴S阴影=1×3+1×3-2×1×1=1.故答案为:115、【解析】如图(见解析),先根据正方形的性质、三角形的判定定理与性质得出,再根据正方形的性质、角的和差得出,从而得出点P的运动轨迹,然后根据圆的性质确认CP取最小值时点P的位置,最后利用勾股定理、线段的和差求解即可.【详解】由题意得:由正方形的性质得:,即在和中,,即点P的运动轨迹在以AB为直径的圆弧上如图,设AB的中点为点O,则点P在以点O为圆心,OA为半径的圆上连接OC,交弧AB于点Q由圆的性质可知,当点P与点Q重合时,CP取得最小值,最小值为CQ,即CP的最小值为故答案为:.【点睛】本题是一道较难的综合题,考查了三角形全等的判定定理与性质、圆的性质(圆周角定理)、勾股定理等知识点,利用圆的性质正确判断出点P的运动轨迹以及CP最小时点P的位置是解题关键.16、0或2【分析】先根据a☆b=ab-b-1得出关于x的一元二次方程,求出x的值即可.【详解】∵a☆b=ab-b-1,∴2☆x=2x-x-1=x-1,∴x☆(2☆x)=x☆(x-1)=0,即,解得:x1=0,x2=2;故答案为:0或2【点睛】本题考查了解一元二次方程以及新运算,理解题意正确列出一元二次方程是解题的关键.17、3;【分析】(1)求出点A、B的坐标,再根据割补法求△ABC的面积即可得到;
(2)将旋转后的MN和抛物线旋转到之前的状态,求出直线解析式及交点坐标,利用割补法求面积即可.【详解】解:(1)在上,令x=0,解得y=2,所以C(0,2),OC=2,将,代入,解得a=3,b=2,∴,,设,的直线解析式为,则,解得,直线AB解析式为,令x=0,解得,y=4,即OD=4,∴,∴(2)如图,由旋转知,,,∴,,直线,令,得∴∴∴【点睛】此题考查了二次函数与几何问题相结合的问题,将三角形的面积转化为解题关键.18、k<【分析】根据当△>0时,方程有两个不相等的两个实数根可得△=4﹣12k>0,再解即可.【详解】解:由题意得:△=4﹣12k>0,解得:k<.故答案为:k<.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)中,当△>0时,方程有两个不相等的两个实数根.三、解答题(共78分)19、(1);(2)【分析】(1)利用因式分解法,即可得出结论;(2)先方程两边平方转化成整式方程,再求一元二次方程的解,最后必须检验.【详解】(1)∵x3+x2-2x=0,∴x(x-1)(x+2)=0∴x=0或x-1=0或x+2=0,∴x1=0,x2=1,x3=-2,故答案为1,-2;;(2),()给方程两边平方得:解得:,(不合题意舍去),∴是原方程的解;【点睛】主要考查了根据材料提供的方法解高次方程,无理方程,理解和掌握材料提供的方法是解题的关键.20、(1)3t,8-2t;(2)△BMN与△ABC相似时,t的值为s或s;(3)t的值为.【分析】(1)根据“路程=时间×速度”和线段的和与差即可得;(2)由两三角形相似得出对应线段成比例,再结合题(1)的结果,联立求解即可;(3)如图(见解析),过点M作于点D,易证,利用相似三角形的性质求出CD和DM的长,再证,从而可建立一个关于t的等式,求解即可得.【详解】(1)由“路程=时间×速度”得:故答案为:;(2)当时,,即,解得当时,,即,解得综上所述,与相似时,t的值为或;(3)如图,过点M作于点D又∵∠B=∠B,解得:或(不符题意,舍去),经检验是方程的解,故t的值为.【点睛】本题考查了勾股定理、相似三角形的判定定理与性质,通过作辅助线,构造相似三角形是解题关键.21、(1)证明见解析;(2)110°【分析】(1)根据等边三角形的性质可得∠BAC=60°,AB=AC,由旋转的性质可得∠DAE=60°,AE=AD,利用SAS即可证出≌,从而证出结论;(2)根据等边三角形的判定定理可得为等边三角形,从而得出∠AED=60°,由(1)中全等可得∠AEB=∠ADC,求出∠AEB即可求出结论.【详解】解:(1)∵是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在和中,∵,∴≌.∴EB=DC.(2)如图,由(1)得∠DAE=60°,AE=AD,∴为等边三角形.∴∠AED=60°,由(1)得≌,∴∠AEB=∠ADC.∵∠BED=50°,∴∠AEB=∠AED+∠BED=110°,∴∠ADC=110°.【点睛】此题考查的是等边三角形的判定及性质、全等三角形的判定及性质和旋转的性质,掌握等边三角形的判定及性质、全等三角形的判定及性质和旋转的性质是解决此题的关键.22、(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据两边成比例夹角相等两三角形相似证明,然后利用平行线的判定定理即可.(2)欲证明PD是⊙O的切线,只要证明OD⊥PA即可解决问题;(3)连接CD.由(2)可知:PC=PD,由AM=MC,推出AM=2MO=2R,在Rt△AOD中,,可得,推出,推出,,由,可得,再利用全等三角形的性质求出MD即可解决问题;【详解】(1)证明:连接、、.∵,,∴,∴,∴,(2)∴,∴,,∵,∴,∴,∵,,∴,∴,∵,∴,∴,∴是的切线.(3)连接.由(1)可知:,∵,∴,在中,,∴,∴,∴,,∵,∴,∵是的中点,∴,∴点是的中点,∴,∵是的直径,∴,在中,∵,,∴,∵,∴,,∴,∴.【点睛】此题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质,解题关键在于构造辅助线,相似三角形解决问题.23、y=﹣.【分析】根据了反比例函数图象上点的坐标特征得到,解得,则可确定M点的坐标为,然后设反比例函数解析式为,再利用反比例函数图象上点的坐标特征得到.【详解】解:根据题意得,解得,所以点的坐标为,设反比例函数解析式为,则,所以反比例函数解析式为.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.24、(1)BD与FM互相垂直,理由见解析;(2)β的度数为30°或75°或120°.【分析】(1)由题意设直线BD与FM相交于点N,即可根据旋转的性质判断直线BD与线段MF垂直;(2)根据旋转的性质得∠MAD=β,分类讨论:当KA=KD时,根据等腰三角形的性质得∠KAD=∠D=30°,即β=30°;当DK=DA时,根据等腰三角形的性质得∠DKA=∠DAK,然后根据三角形内角和可计算出∠DAK=75°,即β=75°;当AK=AD时,根据等腰三角形的性质得∠AKD=∠D=30°,然后根据三角形内角和可计算出∠KAD=120°,即β=120°.【详解】解:(1)BD与/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论