版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.设,,是抛物线上的三点,则的大小关系为()A. B. C. D.2.已知:抛物线y1=x2+2x-3与x轴交于A、B两点(点A在点B的左侧),抛物线y2=x2-2ax-1(a>0)与x轴交于C、D两点(点C在点D的左侧),在使y1>0且y2≤0的x的取值范围内恰好只有一个整数时,a的取值范围是()A.0<a≤ B.a≥ C.≤a< D.<a≤3.如图为二次函数的图象,则下列说法:①;②;③;④;⑤,其中正确的个数为()A.1 B.2 C.3 D.44.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=()A. B. C. D.5.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定6.在▱ABCD中,∠ACB=25°,现将▱ABCD沿EF折叠,使点C与点A重合,点D落在G处,则∠GFE的度数()A.135° B.120° C.115° D.100°7.抛物线与坐标轴的交点个数为()A.0 B.1 C.2 D.38.如图,AB是⊙的直径,AC是⊙的切线,A为切点,BC与⊙交于点D,连结OD.若,则∠AOD的度数为()A. B. C. D.9.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.10.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A. B. C. D.11.已知⊙O的半径为4cm,点P在⊙O上,则OP的长为()A.2cm B.4cm C.6cm D.8cm12.关于x的一元二次方程有两个实数根,,则k的值()A.0或2 B.-2或2 C.-2 D.2二、填空题(每题4分,共24分)13.如图,是某同学制作的一个圆锥形纸帽的示意图,则围成这个纸帽的纸的面积为______.14.已知正六边形的边心距为,则它的周长是______.15.如图是一个正方形及其内切圆,正方形的边长为4,随机地往正方形内投一粒米,落在圆内的概率是______.16.如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD=,∠ADC=60°,则劣弧的长为_____.17.已知关于x的一元二次方程的常数项为零,则k的值为_____.18.圆锥的底面半径为6,母线长为10,则圆锥的侧面积为__________.三、解答题(共78分)19.(8分)如图1,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)连接DF,求DF的长度;(2)求▱DEFG周长的最小值;(3)当▱DEFG为正方形时(如图2),连接BG,分别交EF,CD于点P、Q,求BP:QG的值.20.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.21.(8分)黄山景区销售一种旅游纪念品,已知每件进价为元,当销售单价定为元时,每天可以销售件.市场调查反映:销售单价每提高元,日销量将会减少件.物价部门规定:销售单价不低于元,但不能超过元,设该纪念品的销售单价为(元),日销量为(件).(1)直接写出与的函数关系式.(2)求日销售利润(元)与销售单价(元)的函数关系式.并求当为何值时,日销售利润最大,最大利润是多少?22.(10分)某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x棵橙子树,果园橙子的总产量为y个.(1)求y与x之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60420个以上?23.(10分)如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,,过点E作EM∥BD,交BA的延长线于点M.(1)求的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.24.(10分)实验探究:如图,和是有公共顶点的等腰直角三角形,,交于、点.(问题发现)(1)把绕点旋转到图,、的关系是_________(“相等”或“不相等”),请直接写出答案;(类比探究)(2)若,,把绕点旋转,当时,在图中作出旋转后的图形,并求出此时的长;(拓展延伸)(3)在(2)的条件下,请直接写出旋转过程中线段的最小值为_________.25.(12分)如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.26.已知二次函数.(1)求证:无论m取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为正数,求m的最小整数值.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据二次函数的性质得到抛物线的开口向上,对称轴为直线x=-2,然后根据三个点离对称轴的远近判断函数值的大小.【详解】,∵a=1>0,∴抛物线开口向上,对称轴为直线x=-2,∵离直线x=-2的距离最远,离直线x=-2的距离最近,∴.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.2、C【分析】根据题意可知的对称轴为可知使y1>0且y2≤0的x的取值范围内恰好只有一个整数时,只要符合将代入中,使得,且将代入中使得即可求出a的取值范围.【详解】由题意可知的对称轴为可知对称轴再y轴的右侧,由与x轴交于A、B两点(点A在点B的左侧)可知当时可求得使的x的取值范围内恰好只有一个整数时只要符合将代入中,使得,且将代入中使得即求得解集为:故选C【点睛】本题主要考查了二次函数图像的性质,利用数形结合思想解决二次函数与不等式问题是解题关键.3、D【分析】根据抛物线的开口向下可知a<0,由此可判断①;根据抛物线的对称轴可判断②;根据x=1时y的值可判断③;根据抛物线与x轴交点的个数可判断④;根据x=-2时,y的值可判断⑤.【详解】抛物线开口向下,∴a<0,故①错误;∵抛物线与x轴两交点坐标为(-1,0)、(3,0),∴抛物线的对称轴为x==1,∴2a+b=0,故②正确;观察可知当x=1时,函数有最大值,a+b+c>0,故③正确;∵抛物线与x轴有两交点坐标,∴△>0,故④正确;观察图形可知当x=-2时,函数值为负数,即4a-2b+c<0,故⑤正确,故选D.【点睛】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.4、D【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC
∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即==.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.5、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.6、C【详解】解:根据图形的折叠可得:AE=EC,即∠EAC=∠ECA=25°,∠FEC=∠AEF,∠DFE=∠GFE,又∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=130°,∴∠FEC=65°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DFE+∠FEC=180°,∴∠DFE=115°,∴∠GFE=115°,故选C.考点:1.平行四边形的性质2.图形的折叠的性质.7、C【分析】先计算自变量为0对应的函数值得到抛物线与轴的交点坐标,再解方程得抛物线与轴的交点坐标,从而可对各选项进行判断.【详解】当时,,则抛物线与轴的交点坐标为,当时,,解得,抛物线与轴的交点坐标为,所以抛物线与坐标轴有2个交点.故选C.【点睛】本题考查了抛物线与轴的交点:把求二次函数是常数,与轴的交点坐标问题转化为解关于的一元二次方程.8、C【分析】由AC是⊙的切线可得∠CAB=,又由,可得∠ABC=40;再由OD=OB,则∠BDO=40最后由∠AOD=∠OBD+∠OBD计算即可.【详解】解:∵AC是⊙的切线∴∠CAB=,又∵∴∠ABC=-=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案为C.【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.9、D【分析】根据中心对称图形和轴对称图形的定义即可得解.【详解】A、不是中心对称图形,也不是轴对称图形,此项错误B、是中心对称图形,也是轴对称图形,此项错误C、不是中心对称图形,是轴对称图形,此项错误D、是中心对称图形,但不是轴对称图形,此项正确故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、B【详解】解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120º可得∠ADE=∠BFD,又因∠A=∠B=60º,根据两角对应相等的两三角形相似可得△AED∽△BDF所以,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故选B.【点睛】本题考查相似三角形的判定及性质.11、B【分析】根据点在圆上,点到圆心的距离等于圆的半径求解.【详解】∵⊙O的半径为4cm,点P在⊙O上,∴OP=4cm.故选:B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.12、D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.【详解】解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据已知得出圆锥的底面半径为10cm,圆锥的侧面积=π×底面半径×母线长,即可得出答案.【详解】解:底面圆的半径为10,则底面周长=10π,
侧面面积=×10π×30=300πcm1.
故答案为:300πcm1.【点睛】本题主要考查了圆锥的侧面积公式,掌握圆锥侧面积公式是解决问题的关键,此问题是中考中考查重点.14、12【分析】首先由题意画出图形,易证得△OAB是等边三角形,又由正六边形的边心距利用三角函数的知识即可求得OA的长,即可得AB的长,继而求得它的周长.【详解】如图,连接OA,OB,∵六边形ABCDEF是正六边形,∴∠AOB=×360°=60°,∵OA=OB,∴△OAB是等边三角形,∴∠OAH=60°,∵OH⊥A,OH=,∴,∴AB=OA=2,∴它的周长是:2×6=12考点:正多边形和圆点评:此题考查了圆的内接正多边形的性质.此题难度不大,注意数形结合思想的应用15、【分析】根据题意算出正方形的面积和内切圆面积,再利用几何概率公式加以计算,即可得到所求概率.【详解】解:∵正方形的边长为4,
∴正方形的面积S正方形=16,内切圆的半径r=2,
因此,内切圆的面积为S内切圆=πr2=4π,可得米落入圆内的概率为:故答案为:【点睛】本题考查几何概率、正多边形和圆,解答本题的关键是明确题意,属于中档题.16、【分析】连接DF,OD,根据圆周角定理得到∠CDF=90°,根据三角形的内角和得到∠COD=120°,根据三角函数的定义得到CF==4,根据弧长公式即可得到结论.【详解】解:如图,连接DF,OD,∵CF是⊙O的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于点D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半径=2,∴劣弧的长==π,故答案为π.【点睛】本题考查了圆周角定理,解直角三角形,弧长的计算,作出辅助线构建直角三角形是本题的关键.17、1【分析】由一元二次方程(k﹣1)x1+6x+k1﹣3k+1=0的常数项为零,即可得,继而求得答案.【详解】解:∵一元二次方程(k﹣1)x1+6x+k1﹣3k+1=0的常数项为零,∴,由①得:(k﹣1)(k﹣1)=0,解得:k=1或k=1,由②得:k≠1,∴k的值为1,故答案为:1.【点睛】本题是对一元二次方程根的考查,熟练掌握一元二次方程知识是解决本题的关键.18、【分析】圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.【详解】圆锥的侧面积=×6×10=60cm1.故答案为.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.三、解答题(共78分)19、(1);(2)6;(3)或.【分析】(1)平行四边形DEFG对角线DF的长就是Rt△DCF的斜边的长,由勾股定理求解;(2)平行四边形DEFG周长的最小值就是求邻边2(DE+EF)最小值,DE+EF的最小值就是以AB为对称轴,作点F的对称点M,连接DM交AB于点N,点E与N点重合时即DE+EF=DM时有最小值,在Rt△DMC中由勾股定理求DM的长;(3)平行四边形DEFG为矩形时有两种情况,一是一般矩形,二是正方形,分类用全等三角形判定与性质,等腰直角三角形判定与性质,三角形相似的判定与性质和勾股定理求解.【详解】解:(1)如图1所示:∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD,②当点E与点N重合时点M、E(N)、D在同一条直线上,∴ME+DE=MD由①和②DE+EF的值最小时就是点E与点N重合时,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD===3,∴NF+DN=MD=3,∴l平行四边形DEFG=2(NF+DF)=6;(3)设AE=x,则BE=3﹣x,∵平行四边形DEFG为矩形,∴∠DEF=90°,∵∠AED+∠BEF=90°,∠BEF+∠BFE=90°,∴∠AED=∠BFE,又∵∠A=∠EBF=90°,∴△DAE∽△EBF,∴=,∴=,解得:x=1,或x=2①当AE=1,BE=2时,过点B作BH⊥EF,如图3(甲)所示:∵平行四边形DEFG为矩形,∴∠A=∠ABF=90°,又∵BF=1,AD=2,∴在△ADE和△BEF中,,∴△ADE≌△BEF中(SAS),∴DE=EF,∴矩形DEFG是正方形;在Rt△EBF中,由勾股定理得:EF===,∴BH==,又∵△BEF~△HBF,∴=,HF===,在△BPH和△GPF中有:∠BPH=∠GPF,∠BHP=∠GFP,∴△BPH∽△GPF,∴===,∴PF=•HF=,又∵EP+PF=EF,∴EP=﹣=,又∵AB∥BC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴===,②当AE=2,BE=1时,过点G作GH⊥DC,如图3(乙)所示:∵▱DEFG为矩形,∴∠A=∠EBF=90°,∵AD=AE=2,BE=BF=1,∴在Rt△ADE和Rt△EFB中,由勾股定理得:∴ED==2,EF===,∴∠ADE=45°,又∵四边形DEFG是矩形,∴EF=DG,∠EDG=90°,∴DG=,∠HDG=45°,∴△DHG是等腰直角三角形,∴DH=HG=1,在△HGQ和△BCQ中有,∠GHQ=∠BCQ,∠HQG=∠CQB,∴△HGQ∽△BCQ,∴==,∵HC=HQ+CQ=2,∴HQ=,又∵DQ=DH+HQ,∴DQ=1+=,∵AB∥DC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴=,综合所述,BP:QG的值为或.【点睛】本题考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定与性质;重点掌握相似三角形的判定与性质,难点是作辅助线和分类求值.20、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.21、(1);(2),x=12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意得到w=(x-6)(-10x+280)=-10(x-17)2+1210,根据二次函数的性质即可得到结论.【详解】解:(1)根据题意得,,故与的函数关系式为;(2)根据题意得,当时,随的增大而增大,当时,,答:当为时,日销售利润最大,最大利润元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.22、(1)y=600-5x(0≤x<120);(2)7到13棵【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600-5x)(100+x)=-5x2+100x+60000当y=-5x2+100x+60000=60420时,整理得出:x2-20x+84=0,解得:x1=14,x2=6,∵抛物线对称轴为直线x==10,∴增种7到13棵橙子树时,可以使果园橙子的总产量在60420个以上.【点睛】此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.23、⑴OE=2;⑵见详解⑶【分析】(1)连结OE,根据垂径定理可以得到,得到∠AOE=60º,OC=OE,根据勾股定理即可求出.(2)只要证明出∠OEM=90°即可,由(1)得到∠AOE=60º,根据EM∥BD,∠B=∠M=30°,即可求出.(3)连接OF,根据∠APD=45°,可以求出∠EDF=45º,根据圆心角为2倍的圆周角,得到∠BOE,用扇形OEF面积减去三角形OEF面积即可.【详解】(1)连结OE∵DE垂直OA,∠B=30°∴CE=DE=3,∴∠AOE=2∠B=60º,∴∠CEO=30°,OC=OE由勾股定理得OE=(2)∵EM∥BD,∴∠M=∠B=30º,∠M+∠AOE=90º∴∠OEM=90º,即OE⊥ME,∴EM是⊙O的切线(3)再连结OF,当∠APD=45º时,∠EDF=45º,∴∠EOF=90ºS阴影==【点睛】本题主要考查了圆的切线判定、垂径定理、平行线的性质定理以及扇形面积的简单计算,熟记概念是解题的关键.24、(1)相等;(2)或;(3)1.【分析】(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;
(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;
(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小.【详解】(1)∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
∴BA=CA,DA=EA,∠BAC-∠DAC=∠DAE-∠DAC即∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),
∴BD=CE;
故答案为:相等.
(2)作出旋转后的图形,若点C在AD上,如图2所示:
∵∠EAC=90°,
∴CE=,
∵∠PDA=∠AEC,∠PCD=∠ACE,
∴△PCD∽△ACE,
∴,即
∴PD=
若点B在AE上,如图2所示:
∵∠BAD=90°,
∴Rt△ABD中,,BE=AE−AB=2,
∵∠ABD=∠PBE,∠BAD=∠BPE=90°,
∴△BAD∽△BPE,
∴,即,
解得PB=,
∴PD=BD+PB=,
综上可得,PD的长为或.
(2)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小
在Rt△PED中,PD=DE⋅sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.
当小三角形旋转到图中△ACB的位置时,
在Rt△ACE中,CE=,
在Rt△DAE中,DE=,
∵四边形ACPB是正方形,
∴PC=AB=3,
∴PE=3+4=7,
在Rt△PDE中,PD=,
即旋转过程中线段PD的最小值为/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年北师大版(2022)小学劳动技术二年级上册期末综合测试卷及答案
- 机械臂路径规划技术要求
- 第二章 声现象 单元练习(解析版)
- 2025云南祥瑞宾馆有限责任公司招聘3人笔试历年参考题库附带答案详解
- 2025贵州毕节市锦城实业有限责任公司面向社会招聘综合笔试历年参考题库附带答案详解
- 2025四川雅安市宝兴县选聘县属国有企业高级管理人员拟聘用人员笔试历年参考题库附带答案详解
- 2025下半年云南惠民劳务服务有限公司劳务派遣人员招聘笔试历年参考题库附带答案详解
- 招标评审岗跨部门协作与沟通技巧
- 思维机构面试实战指南多领域职业选择的面试技巧
- 微软技术专家面试技巧与注意事项
- 食品安全管理体系FSMS审核员练习题及答案
- 标准公文写作格式与实例合集
- 丙型肝炎病毒标志物检测与临床应用专家共识(2025版)解读 2
- 2025年基层党委换届工作报告(五年总结)
- 猫品种繁育知识培训课件
- 二年级阅读理解及其解题技巧及练习题(含答案)及解析
- 水池防渗漏施工方案设计
- 滑雪场安全管理培训课件
- 深圳市税务筹划课件
- GB/T 13053-2025客车车内尺寸
- 消防监控值守合同(标准版)
评论
0/150
提交评论