版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三相变压器的连接组别一、Dyn11与YynO的区别三角形对星形接法,DYn11:D表示一次绕组为三角型接线,丫表示二次测绕组星型接线,n表示引出中性线,11表示二次测绕组的相角滞后一次绕组330度,用时钟的表示方法,假设一次测绕组为中心12点时刻,那么二测绕组就在11点位置YynO:高压星形连接、低压星形连接并引出中性线;Dyn11:高压三角形连接,低压星形连接并引出中性线。当低压三相负载不平衡时,低压线圈存在零序电流,YynO连接的变压器由于高压星形连接,零序电流没有通路,所以低压零序电流产生零序磁通,从而感应出零序电势,也就是说相电压存在零序分量,使得三相相电压失去平衡,波形失真。而在Dyn11连接的变压器中,由于高压是三角形连接,高压线圈中也感应出零序电流,它所产生的零序磁通抵消低压所产生的零序磁通,相电压中就不存在零序分量了。所以说,Dyn11变压器比YynO变压器带不平衡负载的能力强。但YynO变压器结构要简单些,一般在1600KVA以下小容量的的变压器中仍然可以采用这种接法。根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点。在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装置。YynO接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响。若低压侧为三相供电的动力负载,一般均配置缺相保护,故此不会造成动力负载因缺相运行而烧毁。采用Dyn11和YynO联结组别是根据用户要求确定。Dyn11与YynO相比优点如下:减少变压器损耗;降低谐波分量;有利于单相接地短路故障的切除;单相不平衡负荷可充分利用。配电变压器和组合式变压器联结组别(Dynil与YynO联结)的特点以前的配电变压器大都采用YynO联结组别,现在国际上大多数国家的配电变压器采用DynO联结,究其原因,是由于采用Dyn11联结较之采用YynO联结有许多优点:1•三次谐波电流可在D联结的一次绕组内形成环流,使之不注入公共的高压电网中去。Dynil联结变压器的零序阻抗比YynO联结变压器小得多,有利于低压单相接地短路故障的切除。以1OOOKVA变压器为例,对YynO联结,在变压器低压侧出线端的单相短路电流仅7KA左右,而保护要求灵敏度为1.5—2倍,故变压器低压总开关电流不宜大于3.5—4.5KA,这样就很难对断路器在保持上下级选择性情况下合理整定好。而对Dynil联结却因短路电流大得多,故能合理整合.Dyn11联结变压器允许中性线电流达到想电流的75%以上。因此其承受不平衡负载能力远比YynO联结变压器大。4•当高压侧一相熔丝熔断时,DynO联结变压器另两相负载仍可运行,而YynO联结却不行。目前,供配电系统的单相负载急剧增长,推广Dyn11联结变压器显得很有必要。国内多数制造厂生产的组合式变压器都采用Dyn11联结。进口的组合式变压器也以Dyn11联结为多。Dyn11联结组合式变压器用于中性点绝缘系统配电网事可行的。因为高压侧为D联结,所以在D联结内有零序电流流通,当低压侧有不平衡负载时极限情况为单相短路。所以在Dyn11联结中,不存在低压侧不平衡负载会影响中性点电位位移的问题。还有,Dynil联结变压器的单相短路电流与三相短路电流近似相等,这对选择熔丝是有利的。而YynO联结变压器的零序阻抗大于正序阻抗,单相短路电流要小于三相短路电流,在选择熔丝上要略微复杂些。据《民用建筑电气设计规范》规定,具有下列情况之一的,宜选用Dynil联结的变压器:1•三相不平衡负载每相额定功率15%以上者。2•需要提高单相短路电流值,确保低压单相接地保护装置动作灵敏度者。3•需要限制三次谐波含量者。二、变压器的连接组别有24种接法就像时钟一样的24点在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,丫表示星形,n表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。丫(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。变压器接线方式有4种基本连接形式:“丫,y”、“D,y”、“Y,d”和“D,d”。我国只采用“丫,y”和“丫,d”。由于丫连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母丫后面加字母n表示。变压器接法与联结组用于国内变压器的高压绕组一般联成丫接法中压绕组与低压绕组的接法要视系统情况而决定。所谓系统情况就是指高压输电系统的电压相量与中压或低压输电系统的电压相量间关系。如低压系配电系统,则可根据标准规定决定。高压绕组常联成Y接法是由于相电压可等于线电压的57.7%,每匝电压可低些。1)•国内的500、330、220与110kV的输电系统的电压相量都是同相位的,所以,对下列电压比的三相三绕组或三相自耦变压器,高压与中压绕组都要用星形接法。当三相三铁心柱铁心结构时,低压绕组也可采用星形接法或角形接法,它决定于低压输电系统的电压相量是与中压及高压输电系统电压相量为同相位或滞后30°电气角。TOC\o"1-5"\h\z500/220/LVkV—YN,yn0 , yn0 或YN ,yn0 , d11220/110/LVkV—YN,yn0 , yn0 或YN ,yn0 , d11330/220/LVkV-YN,yn0 , yn0 或YN ,yn0 , d11330/110/LVkV-YN,yn0 , yn0 或YN ,yn0 , d112).国内60与35kV的输电系统电压有二种不同相位角。如220/60kV变压器采用YNd11接法,与220/69/10kV变压器用YN,yn0,d11接法,这二个60kV输电系统相差30°电气角。当220/110/35kV变压器采用YN,yn0,d11接法,110/35/10kV变压器采用YN,yn0,d11接法,以上两个35kV输电系统电压相量也差30°电气角。所以,决定60与35kV级绕组的接法时要慎重,接法必须符合输电系统电压相量的要求。根据电压相量的相对关系决定60与35kV级绕组的接法。否则,即使容量对,电压比也对,变压器也无法使用,接法不对,变压器无法与输电系统并网。.国内10、6、3与0.4kV输电与配电系统相量也有两种相位。在上海地区,有一种10kV与110kV输电系统电压相量差60°电气角,此时可采用110/35/10kV电压比与YN,yn0,y10接法的三相三绕组电力变压器,但限用三相三铁心柱式铁心。4)[1][2][3].但要注意:单相变压器在联成三相组接法时,不能采用YNy0接法的三相组。三相壳式变压器也不能采用YNy0接法。三相五柱式铁心变压器必须采用YN,yn0,ynO接法时,在变压器内要有三相变压器2接成角形接法的第四绕组,它的出头不引出(结构上要做电气试验时引出的出头不在此例)。5) .不同联结组的变压器并联运行时,一般的规定是联结组别标号必须相同。6) .配电变压器用于多雷地区时,可采用Yzn11接法,当采用z接法时,阻抗电压算法与YynO接法不同,同时z接法绕组的耗铜量要多些。Yzn11接法配电变压器的防雷性能较好。7) •三相变压器采用四个卷铁心框时也不能采用YNyO接法。8) .以上都是用于国内变压器的接法,如出口时应按要求供应合适的接法与联结组标号。9) .一般在高压绕组内都有分接头与分接开关相联。因此,选择分接开关时(包括有载调压分接开关与无励磁调压分接开关),必须注意变压器接法与分接开关接法相配合(包括接法、试验电压、额定电流、每级电压、调压范围等)。对YN接法的有载调压变压器所用有载调压分接开关而言,还要注意中点必须能引出。三、变压器连接组别©变压器的同一相高、低压绕组都是绕在同一铁芯柱上,并被同一主磁通链绕,当主磁通交变时,在高、低压绕组中感应的电势之间存在一定的极性关系同名端:在任一瞬间,高压绕组的某一端的电位为正时,低压绕组也有一端的电位为正,这两个绕组间同极性的一端称为同名端,记作“•”。变压器联结组别用时钟表示法表示规定:各绕组的电势均由首端指向末端,高压绕组电势从A指向X,记为“ÈAX”,简记为“ÈA”,低压绕组电势从a指向x,简记为“Èa”。时钟表示法:把高压绕组线电势作为时钟的长针,永远指向“12”点钟,低压绕组的线电势作为短针,根据高、低压绕组线电势之间的相位指向不同的钟点。确定三相变压器联结组别的步骤是:根据三相变压器绕组联结方式(丫或y、D或d)画出高、低压绕组接线图(绕组按A、B、C相序自左向右排列);在接线图上标出相电势和线电势的假定正方向画出高压绕组电势相量图,根据单相变压器判断同一相的相电势方法,将A、a重合,再画出低压绕组的电势相量图(画相量图时应注意三相量按顺相序画);根据高、低压绕组线电势相位差,确定联结组别的标号。Yy联结的三相变压器,共有YyO、Yy4、Yy8、Yy6、Yy1O、Yy2六种联结组别,标号为偶数Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有110联结组别一种。对三相双绕组电力变压器规定只有YynO、Yd11、YNd11、YNyO和YyO五种。标准组别的应用YynO组别的三相电力变压器用于三相四线制配电系统中,供电给动力和照明的混合负载;Yd11组别的三相电力变压器用于低压高于O.4kV的线路中;YNd11组别的三相电力变压器用于11OkV以上的中性点需接地的高压线路中;YNyO组别的三相电力变压器用于原边需接地的系统中;YyO组别的三相电力变压器用于供电给三相动力负载的线路中。在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,丫表示星形,n表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB33O度(或超前3O度)。变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。丫(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“丫,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母丫后面加字母n表示。三相变压器在电力系统和三相可控整流的触发电路中,都会碰到变压器的极性和联接组别的接线问题。变压器绕组的联接组,是由变压器原、次边三相绕组联接方式不同,使得原、次边之间各个对应线电压的相位关系有所不同,来划分联接组别。通常是采用线电压矢量图对三相变压器的各种联接组别进行接线和识别,对初学者和现场操作者不易掌握。而利用相电压矢量图来对三相变压器各种联接组别进行接线和识别,此种方法具有易学懂、易记牢,在实用中即简便又可靠的特点,特别是对丫/△和△"的联接组,更显示出它的优越性。下面以实例来说明用相电压矢量图对三相变压器的联接组别的接线和识别的方法。)用相电压矢量图画出丫/△接法的接线图首先画出原边三相相电压矢量A、B、C,以原边A相相电压为基准,顺时针旋转到所要求的联接组。丫/「11的联接组别,顺时针旋转了330°后再画出次边a相的相电压矢量,此a相相电压矢量在原边A相与B相反方向-B的合成矢量上,由于原次边三相绕组A、B、C和a、b、c相对应,我们把次边a相绕组的头连接次边b相绕组尾,作为次边a相的输出线,由此在三角形接法中,只要确定了次边a相的连结,其他两相的头尾连接顺序和引出线就不会弄错。因此根据原次边相电压矢量便可画出丫/「11组接线图。)用相电压矢量图来识别丫/△接法的联接组别丫/△接法的联接组别,首先画出原边相电压矢量A、B、C,可以看出,次边a相绕组的尾连接C相绕组的头作为次边a相的输出线,由于次边a与原边A同相位,我们把次边a相相电压矢量画在原边相电压C和-A的中间,以原边A相为基准,顺时针旋转次边a相,它们之间的夹角为210°,由此这个接线图是丫/「7组。3)用相电压矢量图画出△"接法的接线图首先画出次边a、b、c三相相电压矢量图,以次边a相相电压矢量为基准,逆时针旋转到所要求联接组,再根据此矢量图画出该组别的接线图。先画出△/Y-5组的矢量图,再逆时针旋转150°,画出原边A相相电压矢量,此A相相电压矢量上,因此根据此矢量图便可画出^/Y-5组的接线图可知,次边a、b、c三个头作为a、b、c三相的输出端,原边A的尾C的头,B的尾接A的头,C的尾接B的头分别作为A、B、C三相的输出端。4)用相电压矢量图,识别△"接法的联接组别首先画出以次边a、b、c三相电压为基准的矢量图,再根据原边绕组的接法,只要将A相画在次边矢量上,以原边A相顺时针旋转到次边a相之间的夹角是多少,就知道该△"的接线图它属于第几组。识别图中△"的接线图它属于几组,根据上面的方法,画出次边a、b、c三相相电压矢量图,从接线图中可以看出原边A相绕组的头连接B相绕组的尾作为原边A相引出线,因此我们把原边相电压矢量A画到次边矢量a和-b中间,而次边C相绕组的头作为次边a相输出,因此我们把次边矢量C当成是矢量a调相来使用,然后以原边A相顺时旋转到次边a相,它们的夹角为270°,因此这个接线图为联接组。由此可见,用相电压矢量图来对三相变压器各种联接组别进行接线和识别的方法简单易学,却在现场实践过程中具有很高的实用价值。四、浅析配电变压器的联结组别变压器连接组别似乎仍存在某些问题,本文仅从国家设计规范的角度,浅析为什么配电变压器宜选用DynlI联结组别的问题。在解放前,我国配电变压器采用的联结组别基本上是Dyn11系统,大陆解放后,学习苏联,引进苏联的技术和设备,因而沿用了原苏联的配电系统及其丫ynO的联结组别。直到改革开放后,欧美日发达国家的技术及设备纷纷涌人中闰大陆,国际上普遍采用的DynlI也逐渐成为配电变压器的联结方式的主流:然而,几十年来的习惯势力仍然很大:设计院设计的图例符号常采用“丫・丫”;国家相关标准及制造厂样本上之配电变压器联结组别也多表述为“丫ynO或Dynll”(把“丫ynO”置于前列位置),使得配电变压器的联结组别仍有不少写成丫yno(实际上井非工程设计所要求。首先,看看国家有关的设计规范。国标GB5OO52—95《供配电系统设计规范》第六章低压配电中第6.O.7条明确阐述:“在TN及TT”系统接地型式的低压电网中,宜选用DynII结线组别的三相变压器作为配电变压器。”为什么配电变压器宜选用DynlI联结呢?在编写该设计规范时,主编院(原机械部二院)已作了该规范的“条文说明”。在此结合笔者的浅识,作简要的分析。1)有利于抑制高次谐波电流对丫ynO结线的二相变压器,原边星形连接而无中线,故三次谐波电流不能流通。原边激磁电流波形为正弦波时,则铁芯中磁通为平顶波,副边感应电势波形所含高次谐波分量大;激磁电流中以三次谐波为主的高次谐波电流在原边接成三角形条件下,可在原边形成环流,与原边接成星形相比,有利于抑制高次谐波电流,在当前电网中接用电力电子元件、气体放电灯等日益广泛、其功率越来越大的情况下,会使得电流波形畸变。即使三相负荷平衡,中性线中也流过以三次谐波为主的高次谐波电流,配电变压器的原边(常为1OkV侧)采用三角形结线就抑制了此类高次谐波电流,这样就能保证供电波形的质量。2)有利于单相接地短路故障的切除原边(高压)接成三角形(D接),绕组内可通过零序循环电流(感应产生),因而可与低压绕组零序电流互相平衡、去磁,因此,副边(低压侧)零序阻抗很小;若原边(高压侧)星接(丫接),绕组不能流过零序电流,低
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论