




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕业设计数控车床外文五、外文资料翻译StressandStrainIntroductiontoMechanicsofMaterialsMechanicsofmaterialsisabranchofappliedmechanicsthatdealswiththebehaviorofsolidbodiessubjectedtovarioustypesofloading.Itisafieldofstudythatisknownbyavarietyofnames,including“strengthofmaterials”and“mechanicsofdeformablebodies”.Thesolidbodiesconsideredinthisbookincludeaxially-loadedbars,shafts,beams,andcolumns,aswellasstructuresthatareassembliesofthesecomponents.Usuallytheobjectiveofouranalysiswillbethedeterminationofthestresses,strains,anddeformationsproducedbytheloads;ifthesequantitiescanbefoundforallvaluesofloaduptothefailureload,thenwewillhaveobtainedacompletepictureofthemechanicsbehaviorofthebody.Theoreticalanalysesandexperimentalresultshaveequallyimportantrolesinthestudyofmechanicsofmaterials.Onmanyoccasionwewillmakelogicalderivationstoobtainformulasandequationsforpredictingmechanicsbehavior,butatthesametimewemustrecognizethattheseformulascannotbeusedinarealisticwayunlesscertainpropertiesofthebeenmadeinthelaboratory.Also,manyproblemsofimportanceinengineeringcannotbehandledefficientlybytheoreticalmeans,andexperimentalmeasurementsbecomeapracticalnecessity.Thehistoricaldevelopmentofmechanicsofmaterialsisafascinatingblendofboththeoryandexperiment,withexperimentspointingthewaytousefulresultsinsomeinstancesandwiththeorydoingsoinothers①.SuchfamousmenasLeonardodaVinci(1452-1519)andGalileoGalilei(1564-1642)madeexperimentstoadequatetodeterminethestrengthofwires,bars,andbeams,althoughtheydidnotdevelopanyadequatetheories(bytoday’sstandards)toexplaintheirtestresults.Bycontrast,thefamousmathematicianLeonhardEuler(1707-1783)developedthemathematicaltheoryanyofcolumnsandcalculatedthecriticalloadofacolumnin1744,longbeforeanyexperimentalevidenceexistedtoshowthesignificanceofhisresults②.Thus,Euler’stheoreticalresultsremainedunusedformanyyears,althoughtodaytheyformthebasisofcolumntheory.Theimportanceofcombiningtheoreticalderivationswithexperimentallydeterminedpropertiesofmaterialswillbeevidenttheoreticalderivationswithexperimentallydeterminedpropertiesofmaterialswillbeevidentasweproceedwithourstudyofthesubject③.Inthissectionwewillbeginbydiscussingsomefundamentalconcepts,suchasstressandstrain,andthenwewillinvestigatebathebehavingofsimplestructuralelementssubjectedtotension,compression,andshear.StressTheconceptsofstressandstraincanbeillustratedinelementarywaybyconsideringtheextensionofaprismaticbar[seeFig.1.4(a)].Aprismaticbarisonethathascrosssectionthroughoutitslengthandastraightaxis.InthisillustrationthebarisassumedtobeloadedatitsendsbyaxisforcesPthatproduceauniformstretching,ortension,ofthebar.Bymakinganartificialcut(sectionmm)throughthebaratrightanglestoitsaxis,wecanisolatepartofthebarasafreebody[Fig.1.4(b)].Attheright-handendtheforcePisapplied,andattheotherendthereareforcesrepresentingtheactionoftheremovedportionofthebaruponthepartthatremain.Theseforceswillbecontinuouslydistributedoverthecrosssection,analogoustothecontinuousdistributionofhydrostaticpressureoverasubmergedsurface.Theintensityofforce,thatis,theperunitarea,iscalledthestressandiscommonlydenotedbytheGreekletterб.Assumingthatthestresshasauniformdistributionoverthecrosssection[seeFig.1.4(b)],wecanreadilyseethatitsresultantisequaltotheintensityбtimesthecross-sectionalareaAofthebar.Furthermore,fromtheequilibriumofthebodyshowinFig.1.4(b),Fig.1.4PrismaticbarintensionwecanalsoseethatthisresultantmustbeequalinmagnitudeandoppositeindirectiontotheforceP.Hence,weobtainб=P/A(1.3)astheequationfortheuniformstressinaprismaticbar.Thisequationshowsthatstresshasunitsofforcedividedbyarea--------forexample,Newtonspersquaremillimeter(N/mm²)orpoundsofpersquareinch(psi).WhenthebarisbeingstretchedbytheforcesP,asshowninthefigure,theresultingstressisatensilestress;iftheforcearereversedindirection,causingthebattobecompressed,theyarecalledcompressivestress.AnecessaryconditionforEq.(1.3)tobevalidisthatthestressбmustbeuniformoverthecrosssectionofthebat.Thisconditionwillberealizediftheaxialforcepactsthroughthecentroidofthecrosssection,ascanbedemonstratedbystatics.WhentheloadPdosesnotactatthuscentroid,bendingofthebarwillresult,andamorecomplicatedanalysisisnecessary.Throughoutthisbook,however,itisassumedthatallaxialforcesareappliedatthecentroidofthecrosssectionunlessspecificallystatedtothecontrary④.Also,unlessstatedotherwise,itisgenerallyassumedthattheweightoftheobjectitselfisneglected,aswasdonewhendiscussingthisbarinFig.1.4.3.StrainThetotalelongationofabarcarryingforcewillbedenotedbytheGreekletterб[seeFig.1.4(a)],andtheelongationperunitlength,orstrain,isthendeterminedbytheequationε=δ/L(1.4)WhereListhetotallengthofthebar.Nowthatthestrainεisanondimensionalquantity.ItcanbeobtainedaccuratelyformEq.(1.4)aslongasthestrainisuniformthroughoutthelengthofthebar.Ifthebarisintension,thestrainisatensilestrain,representinganelongationorastretchingofthematerial;ifthebarisincompression,thestrainisacompressivestrain,whichmeansthatadjacentcrosssectionofthebarmoveclosertooneanother.(SelectedfromStephenP.TimoshenkoandJamesM.Gere,MechanicsofMaterials,VanNostrandReinholdCompanyLtd.,1978.)ShearForceandBendingMomentinBeamsLetusnowconsider,asanexample,acantileverbeamacteduponbyaninclinedloadPatitsfreeend[Fig.1.5(a)].Ifwecutthroughthebeamatacrosssectionmnandisolatetheleft-handpartofthebeamasfreebody[Fig.1.5(b)],weseethattheactionoftheremovedpartofthebeam(thatis,theright-handpart)upontheleft-handpartmustastoholdtheleft-handinequilibrium.Thedistributionofstressesoverthecrosssectionmnisnotknownatthisstageinourstudy,butweedoknowthattheresultantofthesestressesmustbesuchastoequilibratetheloadP.ItisconvenienttoresolvetotheresultantintoanaxialforceNactingnormaltothecrosssectionandpassingthroughthecentriodofthecrosssection,ashearforceVactingparalleltothecrosssection,andabendingmomentMactingintheplaneofthebeam.Theaxialforce,shearforce,andbendingmomentactingatacrosssectionofabeamareknownasstressresultants.Forastaticallydeterminatebeam,thestressresultantscanbedeterminedfromequationsofequilibrium.Thus,forthecantileverbeampicturedinFig.1.5,wemaywriterthreeequationsofstacticsforthefree-bodydiagramshowninthesecondpartofthefigure.Fromsummationsofforcesinthehorizontalandverticaldirectionswefind,respectively,N=PcosβV=Psinβand,fromasummationofmomentsaboutanaxisthroughthecentroidofcrosssectionmn,weobtainM=Pxsinβwherexisthedistancefromthefreeendtosectionmn.Thus,throughtheuseofafree-bodydiagramandequationsofstaticequilibrium,weareabletocalculatethestressresultantswithoutdifficulty.ThestressinthebeamduetotheaxialforceNactingalonehavebeendiscussedinthetextofUnit.2;NowwewillseehowtoobtainthestressesassociatedwithbendingmomentMandtheshearforceV.ThestressresultantsN,VandMwillbeassumedtobepositivewhenthetheyactinthedirectionsshowninFig.1.5(b).Thissignconventionisonlyuseful,however,whenwearediscussingtheequilibriumoftheleft-handpartofthebeamisconsidered,wewillfindthatthestressresultantshavethesamemagnitudesbutoppositedirections[seeFig.1.5(c)].Therefore,wemustrecognizethatthealgebraicsignofastressresultantdoesnotdependuponitsdirectioninspace,suchastotheleftortotheright,butratheritdependsuponitsdirectionwithrespecttothematerialagainst,whichitacts.Toillustratethisfact,thesignconventionsforN,VandMarerepeatedinFig.1.6,wherethestressresultantsareshownactingonanelementofthebeam.Weseethatapositiveaxialforceisdirectedawayfromthesurfaceuponwhichisacts(tension),apositiveshearforceactsclockwiseaboutthesurfaceuponwhichitacts,andapositivebendingmomentisonethatcompressestheupperpartofthebeam.ExampleAsimplebeamABcarriestwoloads,aconcentratedforcePandacoupleMo,actingasshowninFig.1.7(a).Findtheshearforceandbendingmomentinthebeamatcrosssectionslocatedasfollows:(a)asmalldistancetotheleftofthemiddleofthebeamand(b)asmalldistancetotherightofthemiddleofthebeam.SolutionThefirststepintheanalysisofthisbeamistofindthereactionsRAandRB.TakingmomentsaboutendsAandBgivestwoequationsofequilibrium,fromwhichwefindRA=3P/4–Mo/LRB=P/4+mo/LNext,thebeamiscutatacrosssectionjusttotheleftofthemiddle,andafree-bodydiagramisdrawnofeitherhalfofthebeam.Inthisexamplewechoosetheleft-handhalfofthebean,andthecorrespondingdiagramisshowninFig.1.7(b).TheforcepandthereactionRAappearinthisdiagram,asalsodotheunknownshearforceVandbendingmomentM,bothofwhichareshownintheirpositivedirections.ThecoupleModoesnotappearinthefigurebecausethebeamiscuttotheleftofthepointwhereMoisapplied.AsummationofforcesintheverticaldirectiongivesV=R–P=-P/4-M0/LWhichshownthattheshearfor
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025物联网智能家居系统集成效果实证分析与鉴定报告
- 2025年交通设备制造业数字化转型与智能交通服务模式创新报告
- 2025年直播平台内容监管政策与行业自律实践案例报告
- 机场停机坪租用协议合同
- 门面漏水退租协议书范本
- 汽车代卖废铁协议书范本
- 羊肉烩面店转让合同范本
- 签就业协议不填劳动合同
- 特种车玻璃采购合同范本
- 腻子清包工工程合同范本
- 《公路建设项目文件管理规程》
- 国家职业技术技能标准 6-30-99-00 工业机器人系统操作员 人社厅发2020108号
- 盲人医疗按摩从业备案申请表(样表)
- 对赌融资协议书范文范本
- DB42∕T 2234-2024 装配型附着式升降脚手架安全技术规程
- 中等职业技术学校人工智能技术应用专业(三年制)人才培养方案
- YDT 5206-2023宽带光纤接入工程技术规范
- DL-T1474-2021交、直流系统用高压聚合物绝缘子憎水性测量及评估方法
- 2024年4月自考05424现代设计史试题
- 快速入门穿越机-让你迅速懂穿越机
- Q-GDW 12105-2021电力物联网数据中台服务接口规范
评论
0/150
提交评论