毕业设计数控车床外文_第1页
毕业设计数控车床外文_第2页
毕业设计数控车床外文_第3页
毕业设计数控车床外文_第4页
毕业设计数控车床外文_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业设计数控车床外文五、外文资料翻译StressandStrainIntroductiontoMechanicsofMaterialsMechanicsofmaterialsisabranchofappliedmechanicsthatdealswiththebehaviorofsolidbodiessubjectedtovarioustypesofloading.Itisafieldofstudythatisknownbyavarietyofnames,including“strengthofmaterials”and“mechanicsofdeformablebodies”.Thesolidbodiesconsideredinthisbookincludeaxially-loadedbars,shafts,beams,andcolumns,aswellasstructuresthatareassembliesofthesecomponents.Usuallytheobjectiveofouranalysiswillbethedeterminationofthestresses,strains,anddeformationsproducedbytheloads;ifthesequantitiescanbefoundforallvaluesofloaduptothefailureload,thenwewillhaveobtainedacompletepictureofthemechanicsbehaviorofthebody.Theoreticalanalysesandexperimentalresultshaveequallyimportantrolesinthestudyofmechanicsofmaterials.Onmanyoccasionwewillmakelogicalderivationstoobtainformulasandequationsforpredictingmechanicsbehavior,butatthesametimewemustrecognizethattheseformulascannotbeusedinarealisticwayunlesscertainpropertiesofthebeenmadeinthelaboratory.Also,manyproblemsofimportanceinengineeringcannotbehandledefficientlybytheoreticalmeans,andexperimentalmeasurementsbecomeapracticalnecessity.Thehistoricaldevelopmentofmechanicsofmaterialsisafascinatingblendofboththeoryandexperiment,withexperimentspointingthewaytousefulresultsinsomeinstancesandwiththeorydoingsoinothers①.SuchfamousmenasLeonardodaVinci(1452-1519)andGalileoGalilei(1564-1642)madeexperimentstoadequatetodeterminethestrengthofwires,bars,andbeams,althoughtheydidnotdevelopanyadequatetheories(bytoday’sstandards)toexplaintheirtestresults.Bycontrast,thefamousmathematicianLeonhardEuler(1707-1783)developedthemathematicaltheoryanyofcolumnsandcalculatedthecriticalloadofacolumnin1744,longbeforeanyexperimentalevidenceexistedtoshowthesignificanceofhisresults②.Thus,Euler’stheoreticalresultsremainedunusedformanyyears,althoughtodaytheyformthebasisofcolumntheory.Theimportanceofcombiningtheoreticalderivationswithexperimentallydeterminedpropertiesofmaterialswillbeevidenttheoreticalderivationswithexperimentallydeterminedpropertiesofmaterialswillbeevidentasweproceedwithourstudyofthesubject③.Inthissectionwewillbeginbydiscussingsomefundamentalconcepts,suchasstressandstrain,andthenwewillinvestigatebathebehavingofsimplestructuralelementssubjectedtotension,compression,andshear.StressTheconceptsofstressandstraincanbeillustratedinelementarywaybyconsideringtheextensionofaprismaticbar[seeFig.1.4(a)].Aprismaticbarisonethathascrosssectionthroughoutitslengthandastraightaxis.InthisillustrationthebarisassumedtobeloadedatitsendsbyaxisforcesPthatproduceauniformstretching,ortension,ofthebar.Bymakinganartificialcut(sectionmm)throughthebaratrightanglestoitsaxis,wecanisolatepartofthebarasafreebody[Fig.1.4(b)].Attheright-handendtheforcePisapplied,andattheotherendthereareforcesrepresentingtheactionoftheremovedportionofthebaruponthepartthatremain.Theseforceswillbecontinuouslydistributedoverthecrosssection,analogoustothecontinuousdistributionofhydrostaticpressureoverasubmergedsurface.Theintensityofforce,thatis,theperunitarea,iscalledthestressandiscommonlydenotedbytheGreekletterб.Assumingthatthestresshasauniformdistributionoverthecrosssection[seeFig.1.4(b)],wecanreadilyseethatitsresultantisequaltotheintensityбtimesthecross-sectionalareaAofthebar.Furthermore,fromtheequilibriumofthebodyshowinFig.1.4(b),Fig.1.4PrismaticbarintensionwecanalsoseethatthisresultantmustbeequalinmagnitudeandoppositeindirectiontotheforceP.Hence,weobtainб=P/A(1.3)astheequationfortheuniformstressinaprismaticbar.Thisequationshowsthatstresshasunitsofforcedividedbyarea--------forexample,Newtonspersquaremillimeter(N/mm²)orpoundsofpersquareinch(psi).WhenthebarisbeingstretchedbytheforcesP,asshowninthefigure,theresultingstressisatensilestress;iftheforcearereversedindirection,causingthebattobecompressed,theyarecalledcompressivestress.AnecessaryconditionforEq.(1.3)tobevalidisthatthestressбmustbeuniformoverthecrosssectionofthebat.Thisconditionwillberealizediftheaxialforcepactsthroughthecentroidofthecrosssection,ascanbedemonstratedbystatics.WhentheloadPdosesnotactatthuscentroid,bendingofthebarwillresult,andamorecomplicatedanalysisisnecessary.Throughoutthisbook,however,itisassumedthatallaxialforcesareappliedatthecentroidofthecrosssectionunlessspecificallystatedtothecontrary④.Also,unlessstatedotherwise,itisgenerallyassumedthattheweightoftheobjectitselfisneglected,aswasdonewhendiscussingthisbarinFig.1.4.3.StrainThetotalelongationofabarcarryingforcewillbedenotedbytheGreekletterб[seeFig.1.4(a)],andtheelongationperunitlength,orstrain,isthendeterminedbytheequationε=δ/L(1.4)WhereListhetotallengthofthebar.Nowthatthestrainεisanondimensionalquantity.ItcanbeobtainedaccuratelyformEq.(1.4)aslongasthestrainisuniformthroughoutthelengthofthebar.Ifthebarisintension,thestrainisatensilestrain,representinganelongationorastretchingofthematerial;ifthebarisincompression,thestrainisacompressivestrain,whichmeansthatadjacentcrosssectionofthebarmoveclosertooneanother.(SelectedfromStephenP.TimoshenkoandJamesM.Gere,MechanicsofMaterials,VanNostrandReinholdCompanyLtd.,1978.)ShearForceandBendingMomentinBeamsLetusnowconsider,asanexample,acantileverbeamacteduponbyaninclinedloadPatitsfreeend[Fig.1.5(a)].Ifwecutthroughthebeamatacrosssectionmnandisolatetheleft-handpartofthebeamasfreebody[Fig.1.5(b)],weseethattheactionoftheremovedpartofthebeam(thatis,theright-handpart)upontheleft-handpartmustastoholdtheleft-handinequilibrium.Thedistributionofstressesoverthecrosssectionmnisnotknownatthisstageinourstudy,butweedoknowthattheresultantofthesestressesmustbesuchastoequilibratetheloadP.ItisconvenienttoresolvetotheresultantintoanaxialforceNactingnormaltothecrosssectionandpassingthroughthecentriodofthecrosssection,ashearforceVactingparalleltothecrosssection,andabendingmomentMactingintheplaneofthebeam.Theaxialforce,shearforce,andbendingmomentactingatacrosssectionofabeamareknownasstressresultants.Forastaticallydeterminatebeam,thestressresultantscanbedeterminedfromequationsofequilibrium.Thus,forthecantileverbeampicturedinFig.1.5,wemaywriterthreeequationsofstacticsforthefree-bodydiagramshowninthesecondpartofthefigure.Fromsummationsofforcesinthehorizontalandverticaldirectionswefind,respectively,N=PcosβV=Psinβand,fromasummationofmomentsaboutanaxisthroughthecentroidofcrosssectionmn,weobtainM=Pxsinβwherexisthedistancefromthefreeendtosectionmn.Thus,throughtheuseofafree-bodydiagramandequationsofstaticequilibrium,weareabletocalculatethestressresultantswithoutdifficulty.ThestressinthebeamduetotheaxialforceNactingalonehavebeendiscussedinthetextofUnit.2;NowwewillseehowtoobtainthestressesassociatedwithbendingmomentMandtheshearforceV.ThestressresultantsN,VandMwillbeassumedtobepositivewhenthetheyactinthedirectionsshowninFig.1.5(b).Thissignconventionisonlyuseful,however,whenwearediscussingtheequilibriumoftheleft-handpartofthebeamisconsidered,wewillfindthatthestressresultantshavethesamemagnitudesbutoppositedirections[seeFig.1.5(c)].Therefore,wemustrecognizethatthealgebraicsignofastressresultantdoesnotdependuponitsdirectioninspace,suchastotheleftortotheright,butratheritdependsuponitsdirectionwithrespecttothematerialagainst,whichitacts.Toillustratethisfact,thesignconventionsforN,VandMarerepeatedinFig.1.6,wherethestressresultantsareshownactingonanelementofthebeam.Weseethatapositiveaxialforceisdirectedawayfromthesurfaceuponwhichisacts(tension),apositiveshearforceactsclockwiseaboutthesurfaceuponwhichitacts,andapositivebendingmomentisonethatcompressestheupperpartofthebeam.ExampleAsimplebeamABcarriestwoloads,aconcentratedforcePandacoupleMo,actingasshowninFig.1.7(a).Findtheshearforceandbendingmomentinthebeamatcrosssectionslocatedasfollows:(a)asmalldistancetotheleftofthemiddleofthebeamand(b)asmalldistancetotherightofthemiddleofthebeam.SolutionThefirststepintheanalysisofthisbeamistofindthereactionsRAandRB.TakingmomentsaboutendsAandBgivestwoequationsofequilibrium,fromwhichwefindRA=3P/4–Mo/LRB=P/4+mo/LNext,thebeamiscutatacrosssectionjusttotheleftofthemiddle,andafree-bodydiagramisdrawnofeitherhalfofthebeam.Inthisexamplewechoosetheleft-handhalfofthebean,andthecorrespondingdiagramisshowninFig.1.7(b).TheforcepandthereactionRAappearinthisdiagram,asalsodotheunknownshearforceVandbendingmomentM,bothofwhichareshownintheirpositivedirections.ThecoupleModoesnotappearinthefigurebecausethebeamiscuttotheleftofthepointwhereMoisapplied.AsummationofforcesintheverticaldirectiongivesV=R–P=-P/4-M0/LWhichshownthattheshearfor

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论