




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将个不同的小球放入个盒子中,则不同放法种数有()A. B. C. D.2.已知向量,,若与垂直,则()A.2 B.3 C. D.3.若实数x,y满足约束条件x-3y+4≥03x-y-4≤0x+y≥0,则A.-1 B.1C.10 D.124.设命题,,则为()A., B.,C., D.,5.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数的虚部为()A. B. C. D.6.下列说法正确的是()A.若为真命题,则为真命题B.命题“若,则”的否命题是真命题C.命题“函数的值域是”的逆否命题是真命题D.命题“,关于的不等式有解”,则为“,关于的不等式无解”7.已知随机变量服从正态分布,且,则()A.0.6826 B.0.1587 C.0.1588 D.0.34138.已知,则()A. B.186 C.240 D.3049.已知实数,则的大小关系是()A. B. C. D.10.若随机变量的分布列为()且,则随机变量的方差等于()A. B. C. D.11.已知向量,,若,则()A.-1 B.1 C.-2或1 D.-2或-112.六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有()种A.27 B.81 C.54 D.108二、填空题:本题共4小题,每小题5分,共20分。13.已知,,,,且∥,则=.14.将极坐标方程化为直角坐标方程得________.15.已知地球半径为,地球上两个城市、,城市位于东经30°北纬45°,城市位于西经60°北纬45°,则城市、之间的球面距离为________16.类比初中平面几何中“面积法”求三角形内切圆半径的方法,可以求得棱长为的正四面体的内切球半径为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面ABCD是边长为1的正方形,平面ABCD,PA=AB,M,N分别为PB,AC的中点,(1)求证:MN//平面PAD(2)求点B到平面AMN的距离18.(12分)已知是抛物线上一点,为的焦点.(1)若,是上的两点,证明:,,依次成等比数列.(2)若直线与交于,两点,且,求线段的垂直平分线在轴上的截距.19.(12分)己知函数.(I)求的最小值;(II)若均为正实数,且满足,求证:.20.(12分)已知集合.(1)若,求实数的值;(2)若,求实数的取值范围.21.(12分)某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.(1)求获得复赛资格应划定的最低分数线;(2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间与各抽取多少人?(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。22.(10分)已知函数.(Ⅰ)讨论的单调性;(Ⅱ)若,且对任意的,都有,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:采用分步计数原理来求解:分3步,每一步4种方法,不同方法种数有种考点:分步计数原理2、B【解析】分析:先求出的坐标,然后根据向量垂直的结论列出等式求出x,再求即可.详解:由题可得:故选B.点睛:考查向量的坐标运算,向量垂直关系和模长计算,正确求解x是解题关键,属于基础题.3、C【解析】
本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数z=3x+2y经过平面区域的点(2,2)时,【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.4、C【解析】
根据全称量词命题的否定是存在量词命题,即得答案.【详解】全称量词命题的否定是存在量词命题,.故选:.【点睛】本题考查含有一个量词的命题的否定,属于基础题.5、C【解析】
先由题意得到,进而可求出结果.【详解】由题意可得:,所以虚部为.故选C【点睛】本题主要考查复数的应用,熟记复数的概念即可,属于常考题型.6、C【解析】
采用命题的基本判断法进行判断,条件能推出结论为真,推不出为假【详解】A.若为真命题,则中有一个为真命题即可满足,但推不出为真命题,A错B.命题“若,则”的否命题是:“若,则”,当时,不满足,B错C.原命题与逆否命题真假性相同,的取值大于零,所以值域为,C为真命题D.命题“,关于的不等式有解”,则为“,关于的不等式无解”,D错答案选C【点睛】四种常见命题需要熟悉基本改写方式,原命题与逆否命题为真,逆命题与否命题为真,原命题与逆命题或否命题真假性无法判断,需改写之后再进行判断,命题的否定为只否定结论,全称改存在,存在改全称7、D【解析】分析:根据随机变量符合正态分布,知这组数据是以为对称轴的,根据所给的区间的概率与要求的区间的概率之间的关系,单独要求的概率的值.详解:∵机变量服从正态分布,,
,
∴.故选:D.点睛:本题考查正态分布曲线的特点及曲线所表示的意义,考查根据正态曲线的性质求某一个区间的概率,属基础题.8、A【解析】
首先令,这样可以求出的值,然后把因式分解,这样可以变成两个二项式的乘积的形式,利用两个二项式的通项公式,就可以求出的会下,最后可以计算出的值.【详解】令,由已知等式可得:,,设的通项公式为:,则常数项、的系数、的系数分别为:;设的通项公式为:,则常数项、的系数、的系数分别为:,,所以,故本题选A.【点睛】本题考查了二项式定理的应用,正确求出通项公式是解题的关键.9、B【解析】
根据,利用指数函数对数函数的单调性即可得出.【详解】解:∵,∴,,.∴.故选:B.【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.10、D【解析】分析:先根据已知求出a,b的值,再利用方差公式求随机变量的方差.详解:由题得所以故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2)对于离散型随机变量,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,那么=++…+,称为随机变量的均方差,简称为方差,式中的是随机变量的期望.11、C【解析】
根据题意得到的坐标,由可得的值.【详解】由题,,,或,故选C【点睛】本题考查利用坐标法求向量差及根据向量垂直的数量积关系求参数12、B【解析】
以特殊元素甲为主体,根据分类计数原理,计算出所有可能的情况,求得结果.【详解】甲在五楼有33甲不在五楼且不在二楼有C3由分类加法计数原理知共有54+27=81种不同的情况,故选B.【点睛】该题主要考查排列组合的有关知识,需要理解排列组合的概念,根据题目要求分情况计数,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
因为,,,由∥知,属于,.考点:平行向量间的坐标关系.14、【解析】
在曲线极坐标方程两边同时乘以,由可将曲线的极坐标方程化为普通方程.【详解】在曲线极坐标方程两边同时乘以,得,化为普通方程得,即,故答案为:.【点睛】本题考查曲线极坐标方程与普通方程之间的转化,解题时充分利用极坐标与普通方程之间的互化公式,考查运算求解能力,属于中等题.15、【解析】
欲求坐飞机从A城市飞到B城市的最短距离,即求出地球上这两点间的球面距离即可.A、B两地在同一纬度圈上,计算经度差,求出AB弦长,以及球心角,然后求出球面距离.即可得到答案.【详解】由已知地球半径为R,则北纬45°的纬线圈半径为,
又∵两座城市的经度分别为东经30°和西经60°,
故连接两座城市的弦长,
则A,B两地与地球球心O连线的夹角,
则A、B两地之间的距离是.
故答案为:.【点睛】本题考查球面距离及其他计算,考查空间想象能力,是基础题.16、【解析】分析:先根据类比将正四面体分割成四个小三棱锥,再根据体积关系求内切球半径.详解:设正四面体的内切球半径为,各面面积为,所以.点睛:等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高或内切球的半径,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
试题分析:(1)是正方形中对角线中点三点共线,为中点为的中位线(2)设点B到平面AMN的距离为h,,,,,,,,代数得考点:线面平行的判定和点面距的求法18、(1)见解析;(2)【解析】
(1)由在抛物线上,求出抛物线方程;根据抛物线焦半径公式可得,,的长度,从而证得依次成等比数列;(2)将直线代入抛物线方程,消去,根据韦达定理求解出,从而可得中点坐标和垂直平分线斜率,从而求得垂直平分线所在直线方程,代入求得结果.【详解】(1)是抛物线上一点根据题意可得:,,,,依次成等比数列(2)由,消可得,设的中点,线段的垂直平分线的斜率为故其直线方程为当时,【点睛】本题考查抛物线的几何性质、直线与抛物线综合问题,关键在于能够通过直线与抛物线方程联立,得到韦达定理的形式,从而准确求解出斜率.19、(I)(II)见解析【解析】
利用绝对值的性质可知当函数有最小值。根据题意将化简为,结合,凑配法利用基本不等式,利用分析法,推出待证结论成立。【详解】解:(I)因为函数.等号成立的条件综上,的最小值(II)据(1)求解知,所以,又因为,,,.即,当且仅当时等号成立.所以【点睛】本题主要考查了绝对值的性质以及基本不等式的应用,证明方法主要用了分析法,,从数学题的待证结论出发,一步一步探索下去,最后达到题设的已知条件。20、(1)(2)或【解析】
(1)先化简集合,,根据求解.(2)由(1)得到或,再利用子集的定义由求解.【详解】(1)因为集合,,又因为,所以,所以.(2)或,因为,所以或,解得或.【点睛】本题主要考查集合的基本关系及其运算,还考查了运算求解的能力,属于中档题.21、(1)本次考试复赛资格最低分数线应划为100分;(2)5人,2人;(3)元.【解析】
(1)求获得复赛资格应划定的最低分数线,即是求考试成绩中位数,只需满足中位数两侧的频率之和均为0.5即可;(2)先确定得分在区间与的频率之比,即可求解;(3)先确定的可能取值,再求出其对应的概率,即可求出分布列和期望.【详解】(1)由题意知的频率为:,的频率为:所以分数在的频率为:,从而分数在的,假设该最低分数线为由题意得解得.故本次考试复赛资格最低分数线应划为100分。(2)在区间与,,在区间的参赛者中,利用分层抽样的方法随机抽取7人,分在区间与各抽取5人,2人,结果是5人,2人.(3)的可能取值为2,3,4,则:,从而Y的分布列为Y260023002000(元).【点睛】本题主要考查频率分布直方图求中位数,以及分层抽样和超几何分布等问题,熟记相关概念,即可求解,属于常考题型.22、(Ⅰ)见解析;(Ⅱ)【解析】
(Ⅰ)对a分和两种情况讨论,利用导数求函数的单调性;(Ⅱ)当时,由(Ⅰ)知在上单调递增,在上单调递减.再对a分三种情况讨论,利用导数研究不等式的恒成立问题得解.【详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烘焙店投资加盟合同范本
- 混凝土配料劳务合同范本
- 消防检测合同的补充协议
- 洗车店急需转让合同范本
- 漂流项目运营协议书范本
- 煤气管道转让协议书模板
- 泉州串串香加盟合同范本
- 物业顾问合同协议书范本
- 砂滤池清洗回填合同范本
- 铺面场地出租协议书模板
- 初二物理简单有趣的小实验
- 重庆市社会保险登记表
- GB/T 3282-2012钛铁
- GB/T 25149-2010工业设备化学清洗中碳钢钝化膜质量的测试方法红点法
- GB/T 18290.3-2000无焊连接第3部分:可接触无焊绝缘位移连接一般要求、试验方法和使用导则
- 高血压疾病证明书
- 新高三暑假弯道超车2021年高二期末主题班会学校活动ppt
- 许晓峰版电机拖动电子教案(全)课件
- 对肝癌肝切除术指证的新近认识课件讲义
- 质量过程报告记录汇总表-scr与ncr表格报检单
- 患者误吸风险评价表完整优秀版
评论
0/150
提交评论