




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,则()A. B. C. D.2.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是13.已知函数,过点作曲线的两条切线,,切点分别为,,设,若对任意的正整数,在区间内存在个数,,…,使得不等式成立,则的最大值为()A.4 B.5 C.6 D.74.若函数,则()A.0 B.-1 C. D.15.已知集合,,则下图中阴影部分所表示的集合为()A. B. C. D.6.展开式中x2的系数为()A.15 B.60 C.120 D.2407.已知三角形的面积是,,,则b等于()A.1 B.2或1 C.5或1 D.或18.某班某天上午有五节课,需安排的科目有语文,数学,英语,物理,化学,其中语文和英语必须连续安排,数学和物理不得连续安排,则不同的排课方法数为()A.60 B.48 C.36 D.249.同学聚会时,某宿舍的4位同学和班主任老师排队合影留念,其中宿舍长必须和班主任相邻,则5人不同的排法种数为()A.48 B.56 C.60 D.12010.一个随机变量的分布列如图,其中为的一个内角,则的数学期望为()A. B. C. D.11.由数字0,1,2,3组成的无重复数字且能被3整除的非一位数的个数为()A.12 B.20 C.30 D.3112.设实数,则下列不等式一定正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为偶函数,则的解集为__________.14.化简______.15.已知复数,其中是虚数单位,则复数的实部为__________.16.已知点,,,则△的面积是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知向量,,设函数.(1)求f(x)的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,若,,△ABC的面积为,求a的值.18.(12分)已知函数的最大值为4.(1)求实数的值;(2)若,求的最小值.19.(12分)已知,其前项和为.(1)计算;(2)猜想的表达式,并用数学归纳法进行证明.20.(12分)1,4,9,16……这些数可以用图1中的点阵表示,古希腊毕达哥拉斯学派将其称为正方形数,记第个数为.在图2的杨辉三角中,第行是展开式的二项式系数,,…,,记杨辉三角的前行所有数之和为.(1)求和的通项公式;(2)当时,比较与的大小,并加以证明.21.(12分)一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:123450.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;(2)求的分布列及期望.22.(10分)如图,已知正三棱柱的高为3,底面边长为,点分别为棱和的中点.(1)求证:直线平面;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由已知向量的坐标运算直接求得的坐标.【详解】∵向量(-2,﹣1),(3,2),∴.故选C.【点睛】本题考查了向量坐标的运算及数乘运算,属于基础题.2、A【解析】
根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.3、B【解析】设,因,故,由题意过点可得;同理可得,因此是方程的两个根,则,故.由于在上单调递增,且,所以,因此问题转化为对一切正整数恒成立.又,故,则,由于是正整数,所以,即的最大值为,应选答案B.4、B【解析】
根据分段函数的解析式代入自变量即可求出函数值.【详解】因为,所以,,因为,所以,故,故选B.【点睛】本题主要考查了分段函数,属于中档题.5、B【解析】分析:根据韦恩图可知阴影部分表示的集合为,首先利用偶次根式满足的条件,求得集合B,根据集合的运算求得结果即可.详解:根据偶次根式有意义,可得,即,解得,即,而题中阴影部分对应的集合为,所以,故选B.点睛:该题考查的是有关集合的运算的问题,在求解的过程中,首先需要明确偶次根式有意义的条件,从而求得集合B,再者应用韦恩图中的阴影部分表示的是,再利用集合的运算法则求得结果.6、B【解析】
∵展开式的通项为,令6-r=2得r=4,∴展开式中x2项为,所以其系数为60,故选B7、D【解析】
由三角形面积公式,计算可得的值,即可得B的值,结合余弦定理计算可得答案.【详解】根据题意:三角形的面积是,即,又由,则则或,若则此时则;若,则,此时则;故或.故选:D.【点睛】本题考查三角形的面积公式,考查余弦定理在解三角形中的应用,难度较易.8、D【解析】
由排列组合中的相邻问题与不相邻问题得:不同的排课方法数为,得解.【详解】先将语文和英语捆绑在一起,作为一个新元素处理,再将此新元素与化学全排,再在3个空中选2个空将数学和物理插入即可,即不同的排课方法数为,故选:D.【点睛】本题考查了排列组合中的相邻问题与不相邻问题,属中档题.9、A【解析】
采用捆绑法,然后全排列【详解】宿舍长必须和班主任相邻则有种可能,然后运用捆绑法,将其看成一个整体,然后全排列,故一共有种不同的排法故选【点睛】本题考查了排列中的位置问题,运用捆绑法来解答即可,较为基础10、D【解析】
利用二倍角的余弦公式以及概率之和为1,可得,然后根据数学期望的计算公式可得结果.【详解】由,得,所以或(舍去)则,故选:D【点睛】本题考查给出分布列,数学期望的计算,掌握公式,细心计算,可得结果.11、D【解析】
分成两位数、三位数、四位数三种情况,利用所有数字之和是的倍数,计算出每种情况下的方法数然后相加,求得所求的方法总数.【详解】两位数:含数字1,2的数有个,或含数字3,0的数有1个.三位数:含数字0,1,2的数有个,含数字1,2,3有个.四位数:有个.所以共有个.故选D.【点睛】本小题主要考查分类加法计数原理,考查一个数能被整除的数字特征,考查简单的排列组合计算,属于基础题.12、D【解析】
对4个选项分别进行判断,即可得出结论.【详解】解:由于a>b>0,,A错;当0<c<1时,ca<cb;当c=1时,ca=cb;当c>1时,ca>cb,故ca>cb不一定正确,B错;a>b>0,c>0,故ac﹣bc>0,C错.,D对;故选D.【点睛】本题考查不等式的性质,考查学生分析解决问题的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求出,根据为偶函数,即可得出,从而得出,从而判断在上单调递增,且,这样即可由,得出,从而得出,这样解不等式即可.【详解】由题知函数为偶函数,则解得,所以,,故即答案为.【点睛】本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用关系式:奇函数由恒成立求解,偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.14、【解析】
利用模的性质、复数的乘方运算法则、模的计算公式直接求解即可.【详解】.故答案为:【点睛】本题考查了复数模的性质及计算公式,考查了复数的乘方运算,考查了数学运算能力.15、【解析】
通过分子分母同时乘以分母的共轭复数化简,从而得到答案.【详解】由题意复数,因此复数的实部为.【点睛】本题主要考查复数的四则运算,实部的相关概念,难度不大.16、【解析】
首先求出的直线方程:,线段的长度;然后由点到直线的距离公式求出点到直线的距离,根据三角形的面积公式即可求解。【详解】因为,由两点间的距离公式可得,又所以的直线方程为,整理可得:,由点到直线的距离公式,所以△的面积故答案为:【点睛】本题考查平面解析几何中的两点间的距离公式、点斜式求直线方程、点到直线的距离公式,属于基础计算题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】试题分析:(1)由两向量的坐标,利用平面向量的数量积运算列出解析式,化简后利用周期公式求出最小正周期;利用正弦函数的单调性确定出递增区间即可;
(2)由,,根据解析式求出的度数,利用三角形面积公式列出关系式,将b,及已知面积代入求出的值,再利用余弦定理即可求出的值.试题解析:(1)∵,,∴∴令(),∴()∴的单调区间为,(2)由得,,∴又∵为的内角,∴,∴,∴∵,,∴,∴∴,∴.【点睛】此题考查了余弦定理,平面向量的数量积运算,正弦函数的单调性,以及三角形的面积公式,其中熟练掌握余弦定理是解本题的关键.18、(1);(2).【解析】【试题分析】(1)利用绝对值不等式,消去,可求得实数的值.(2)由(1)得.利用配凑法,结合基本不等式可求得最小值.【试题解析】(1)由,当且仅当且当时取等号,此时取最大值,即;(2)由(1)及可知,∴,则,(当且仅当,即时,取“=”)∴的最小值为4.19、(1);(2),证明见解析.【解析】
(1)由题可得前4项,依次求和即可得到答案;(2)由(1)得到前四项和的规律可猜想,由数学归纳法,即可做出证明,得到结论。【详解】(1)计算,.(2)猜想.证明:①当时,左边,右边,猜想成立.②假设猜想成立,即成立,那么当时,,而,故当时,猜想也成立.由①②可知,对于,猜想都成立.【点睛】本题主要考查了归纳、猜想与数学归纳法的证明方法,其中解答中明确数学归纳证明方法:(1)验证时成立;(2)假设当时成立,证得也成立;(3)得到证明的结论.其中在到的推理中必须使用归纳假设.着重考查了推理与论证能力.20、(Ⅰ),(Ⅱ),证明见解析【解析】
(Ⅰ)由正方形数的特点知,由二项式定理的性质,求出杨辉三角形第行个数的和,由此能求出和的通项公式;(Ⅱ)由时,,时,,证明:时,时,可以逐个验证;证明时,时,可以用数学归纳法证明.【详解】(Ⅰ)由正方形数的特点可知;由二项式定理的性质,杨辉三角第行个数的和为,所以.(Ⅱ),,所以;,,所以;,,所以;,,所以;,所以;猜想:当时,;当时,.证明如下:证法1:当时,已证.下面用数学归纳法证明:当时,.①当时,已证:②假设时,猜想成立,即,所以;那么,,所以,当时,猜想也成立.根据①②,可知当时,.【点睛】本题主要考查了数列的通项公式的求法,以及数学归纳法不等式的证明,其中解答中要认真审题,注意二项式定理和数学归纳法的合理运用,着重考查了推理与运算能力,属于中档试题.21、(1);(2).【解析】试题分析:(1)每位顾客采用1期付款的概率为,3位顾客采用1期付款的人数记为,则,(2)分别计算利润为200元、250元、300元的概率,再列出分布列和期望;试题解析:(1);(2)η的可能取值为200元,250元,300元.P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1-P(η=200)-P(η=250)=1-0.4-0.4=0.2.η的分布列为:
200
250
300
P
0.4
0.4
0.2
E(η)=200×0.4+250×0.4+300×0.2=240(元).考点:1.二项分布;2.分布列与数学期望;22、(1)详见解析;(2).【解析】
取BC中点F,连接FE,FD,可证平面AFDE,则,求解三角形证明,再由线面垂直的判定可得直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自助美甲店合作合同范本
- 高空作业安全打协议合同
- 消毒用品捐献协议书模板
- 浴场会所托管合同协议书
- 离婚前三年的财产协议书
- 物业零星工程施工协议书
- 自媒体运营团队合同范本
- 第三方协议护理网签合同
- 续签的合同上没竞业协议
- 糖果批发转让协议书模板
- GA/T 1323-2016基于荧光聚合物传感技术的痕量炸药探测仪通用技术要求
- 2023年苏州国发创业投资控股有限公司招聘笔试题库及答案解析
- 护士注册健康体检表下载【可直接打印版本】
- 高中历史《第一次工业革命》说课课件
- 学生集体外出活动备案表
- SH3904-2022年石油化工建设工程项目竣工验收规定
- 叉车检验检测报告
- DNF装备代码大全
- 基于Qt的俄罗斯方块的设计(共25页)
- 古建筑木构件油漆彩绘地仗施工技术分析
- 食堂投诉处理方案
评论
0/150
提交评论