吉林省长春市文曲星名校2024届高二上数学期末学业质量监测试题含解析_第1页
吉林省长春市文曲星名校2024届高二上数学期末学业质量监测试题含解析_第2页
吉林省长春市文曲星名校2024届高二上数学期末学业质量监测试题含解析_第3页
吉林省长春市文曲星名校2024届高二上数学期末学业质量监测试题含解析_第4页
吉林省长春市文曲星名校2024届高二上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市文曲星名校2024届高二上数学期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是等差数列,是其公差,是其前n项的和.若,,则下列结论不正确的是()A. B.C. D.与均为的最大值2.已知实数a,b,c,若a>b,则下列不等式成立的是()A B.C. D.3.若点P在曲线上运动,则点P到直线的距离的最大值为()A. B.2C. D.44.已知为圆:上任意一点,则的最小值为()A. B.C. D.5.方程表示椭圆的充分不必要条件可以是()A. B.C. D.6.已知抛物线内一点,过点的直线交抛物线于,两点,且点为弦的中点,则直线的方程为()A. B.C D.7.若的解集是,则等于()A.-14 B.-6C.6 D.148.执行如图所示的程序框图,输出的s值为()A.8 B.9C.27 D.369.已知等差数列为其前项和,且,且,则()A.36 B.117C. D.1310.已知数列满足,且,那么()A. B.C. D.11.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.612.在正四面体中,点为所在平面上动点,若与所成角为定值,则动点的轨迹是()A.圆 B.椭圆C.双曲线 D.抛物线二、填空题:本题共4小题,每小题5分,共20分。13.“直线和直线垂直”的充要条件是______14.已知函数,则______15.某班名学生期中考试数学成绩的频率分布直方图如图所示.根据频率分布直方图,估计该班本次测试平均分为______16.已知空间直角坐标系中,点,,若,与同向,则向量的坐标为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(1)讨论的单调性;(2)若时,对任意都有恒成立,求实数的最大值18.(12分)设函数(1)若曲线在点处的切线方程为,求;(2)求函数的单调区间19.(12分)已知是公差不为零等差数列,,且、、成等比数列(1)求数列的通项公式:(2)设.数列{}的前项和为,求证:20.(12分)已知抛物线的焦点F,C上一点到焦点的距离为5(1)求C的方程;(2)过F作直线l,交C于A,B两点,若线段AB中点的纵坐标为-1,求直线l的方程21.(12分)四棱锥,底面为矩形,面,且,点在线段上,且面.(1)求线段的长;(2)对于(1)中的,求直线与面所成角的正弦值.22.(10分)某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?(3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由已知条件可以得出,,,即可得公差,再利用等差数列的性质以及前n项的和的性质可判断每个选项的正误,进而可得正确选项.【题目详解】由可得,由可得,故选项B正确;由可得,因为公差,故选项A正确,,所以,故选项C不正确;由于是等差数列,公差,,,,所以都是的最大值,故选项D正确;所以选项C不正确,故选:C2、C【解题分析】根据不等式的性质逐一分析即可得出答案.【题目详解】解:对于A,因为a>b,若,则,故A错误;对于B,若,则,故B错误;对于C,若a>b,又,所以,故C正确;对于D,当时,,故D错误.故选:C.3、A【解题分析】由方程确定曲线的形状,然后转化为求圆上的点到直线距离的最大值【题目详解】由曲线方程为知曲线关于轴成轴对称,关于原点成中心对称图形,在第一象限内,方程化为,即,在第一象限内,曲线是为圆心,为半径的圆在第一象限的圆弧(含坐标轴上的点),实际上整个曲线就是这段圆弧及其关于坐标轴.原点对称的图形加上原点,点到直线的距离为,所以所求最大值为故选:A4、C【解题分析】设,则的几何意义为圆上的点和定点连线的斜率,利用直线和圆相切,即可求出的最小值;【题目详解】圆,它圆心是,半径为1,设,则,即,当直线和圆相切时,有,可得,,的最小值为:,故选:5、D【解题分析】由“方程表示椭圆”可求得实数的取值范围,结合充分不必要条件的定义可得出结论.【题目详解】若方程表示椭圆,则,解得或.故方程表示椭圆的充分不必要条件可以是.故选:D.6、B【解题分析】利用点差法求出直线斜率,即可得出直线方程.【题目详解】设,则,两式相减得,即,则直线方程为,即.故选:B.7、A【解题分析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【题目详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.8、B【解题分析】执行程序框图,第一次循环,,满足;第二次循环,,满足;第三次循环,,不满足,输出,故选B.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9、B【解题分析】根据等差数列下标的性质,,进而根据条件求出,然后结合等差数列的求和公式和下标性质求得答案.【题目详解】由题意,,即为递增数列,所以,又,又,联立方程组解得:.于是,.故选:B.10、D【解题分析】由递推公式得到,,,再结合已知即可求解.【题目详解】解:由,得,,又,那么故选:D11、D【解题分析】利用正态分布的计算公式:,【题目详解】且又故选:D12、B【解题分析】把条件转化为与圆锥的轴重合,面与圆锥的相交轨迹即为点的轨迹后即可求解.【题目详解】以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.令与圆锥的轴线重合,如图所示,则圆锥母线与所成角为定值,所以面与圆锥的相交轨迹即为点的轨迹.根据题意,不可能垂直于平面即轨迹不可能为圆.面不可能与圆锥轴线平行,即轨迹不可能是双曲线.可进一步计算与平面所成角为,即时,轨迹为抛物线,时,轨迹为椭圆,,所以轨迹为椭圆.故选:B.【题目点拨】本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、或【解题分析】利用直线一般式方程表示垂直的方法求解.【题目详解】因为直线和直线垂直,所以,解得或;故答案为:或.14、【解题分析】根据导数的定义求解即可【题目详解】由,得,所以,故答案为:15、【解题分析】将每个矩形底边的中点值乘以对应矩形的面积,即可得解.【题目详解】由频率分布直方图可知,该班本次测试平均分为.故答案为:.16、【解题分析】求出坐标,根据给条件表示出坐标,利用向量模的坐标表示计算作答.【题目详解】因,,则,因与同向,则设,因此,,于是得,解得,则,所以向量的坐标为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2).【解题分析】(1)利用导数与单调性的关系分类讨论即得;(2)由题可得在上恒成立,构造函数,利用导数求函数的最值即可.【小问1详解】的定义域为,且当时,显然,在定义域上单调递增;当时,令,得则有:极大值即在上单调递增,在上单调递减,综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】当时,,对于满足恒成立,在上恒成立,令,只需∴,,,令,则,在上单调递增,又,,存在唯一的,使得,即,两边取自然对数得,极小值,则的最大值为18、(1)(2)答案见解析【解题分析】(1)求出,建立方程关系,即可求出结论;(2)对分类讨论,求出的单调区间.【小问1详解】由于切点在切线上,所以,函数通过点又,根据导数几何意义,;【小问2详解】由可知当时,则;当时,则;当时,的单调递减区间为,单调递增区间为当时,单调递增区间为,单调递减区间为.19、(1);(2)证明见解析.【解题分析】(1)设等差数列的公差为,则,根据题意可得出关于的方程,求出的值,利用等差数列的通项公式可求得数列的通项公式;(2)求得,利用裂项相消法求出,即可证得结论成立.【小问1详解】解:设等差数列的公差为,则,由题意可得,即,整理可得,,解得,因此,.【小问2详解】证明:,因此,,故原不等式得证.20、(1);(2).【解题分析】(1)由抛物线的定义,结合已知有求p,写出抛物线方程.(2)由题意设直线l为,联立抛物线方程,应用韦达定理可得,由中点公式有,进而求k值,写出直线方程.【题目详解】(1)由题意知:抛物线的准线为,则,可得,∴C的方程为.(2)由(1)知:,由题意知:直线l的斜率存在,令其方程为,∴联立抛物线方程,得:,,若,则,而线段AB中点的纵坐标为-1,∴,即,得,∴直线l的方程为.【题目点拨】关键点点睛:(1)利用抛物线定义求参数,写出抛物线方程;(2)由直线与抛物线相交,以及相交弦的中点坐标值,应用韦达定理、中点公式求直线斜率,并写出直线方程.21、(1)1(2)【解题分析】(1)根据线面垂直得到,再由相似比得方程可求解;(2)建立空间直角坐标系,求平面的法向量,运用夹角公式先求线面角的余弦值,再转化为正弦值即可.小问1详解】面,在矩形中,易得:;【小问2详解】如四建立空间直角坐标系:则,,由题意可知:为平面的一个法向量,,,直线与面所成角的正弦值为.22、(1)公司每天包裹的平均数和中位数都为260件.(2)该公司平均每天的利润有1000元.(3).【解题分析】(1)对于平均数,运用平均数的公式即可;由于中位数将频率分布直方图分成面积相等的两部分,先确定中位数位于哪一组,然后建立关于中位数的方程即可求出.(2)利用每天的总收入减去工资的支出,即可得到公司每天的利润.(3)该为古典概型,根据题意分别确定总的基本事件个数,以及事件“快递费为45元”包括的基本事件个数,即可求出概率.【题目详解】(1)每天包裹数量的平均数为;或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论