版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省孝义市)2024届高二上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,我市某地一拱桥垂直轴截面是抛物线,已知水利人员在某个时刻测得水面宽,则此时刻拱桥的最高点到水面的距离为()A. B.C. D.2.已知三个顶点都在抛物线上,且为抛物线的焦点,若,则()A.6 B.8C.10 D.123.若直线与互相平行,且过点,则直线的方程为()A. B.C. D.4.抛物线准线方程为()A. B.C. D.5.直线的一个方向向量为,则它的斜率为()A. B.C. D.6.已知数列满足:对任意的均有成立,且,,则该数列的前2022项和()A0 B.1C.3 D.47.曲线在点处的切线方程是A. B.C. D.8.直线的倾斜角为()A.150° B.120°C.60° D.30°9.执行如图所示的程序框图,输出的结果为()A.4 B.9C.23 D.6410.某市物价部门对5家商场的某商品一天的销售量及其售价进行调查,5家商场的售价(元)和销售量(件)之间的一组数据如表所示.按公式计算,与的回归直线方程是,则下列说法错误的是()售价99.51010.511销售量1110865A.B.售价变量每增加1个单位时,销售变量大约减少3.2个单位C.当时,的估计值为12.8D.销售量与售价成正相关11.已知函数,则的值为()A. B.C. D.12.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线,的左、右焦点分别为、,且的焦点到渐近线的距离为1,直线与交于,两点,为弦的中点,若为坐标原点)的斜率为,,则下列结论正确的是____________①;②的离心率为;③若,则的面积为2;④若的面积为,则为钝角三角形14.一个物体的运动方程为其中位移的单位是米,时间的单位是秒,那么物体在秒末的瞬时速度是__________米/秒15.已知曲线,①若,则是椭圆,其焦点在轴上;②若,则是圆,其半径为;③若,则是双曲线,其渐近线方程为;④若,,则是两条直线.以上四个命题,其中正确的序号为_________.16.已知函数,则_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥S−ABCD中,已知四边形ABCD是边长为的正方形,点S在底面ABCD上的射影为底面ABCD的中心点O,点P在棱SD上,且△SAC的面积为1(1)若点P是SD的中点,求证:平面SCD⊥平面PAC;(2)在棱SD上是否存在一点P使得二面角P−AC−D的余弦值为?若存在,求出点P的位置;若不存在,说明理由18.(12分)已知在时有极值0.(1)求常数,的值;(2)求在区间上的最值.19.(12分)已知抛物线C:x2=2py的焦点为F,点N(t,1)在抛物线C上,且|NF|=.(1)求抛物线C的方程;(2)过点M(0,1)的直线l交抛物线C于不同的两点A,B,设O为坐标原点,直线OA,OB的斜率分别为k1,k2,求证:k1k2为定值.20.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)1234567失效费(单位:万元)2.903.303.604.404.805.205.90(1)由上表数据可知,可用线性回归模型拟合与关系.请用相关系数加以说明;(精确到0.01)(2)求出关于的线性回归方程,并估算该种机械设备使用8年的失效费参考公式:相关系数线性回归方程中斜率和截距最小二乘估计计算公式:,参考数据:,,21.(12分)已知命题p:“,”为假命题,命题q:“实数满足”.若是真命题,是假命题,求的取值范围22.(10分)已知圆C的圆心在直线上,且过点.(1)求圆C的方程;(2)若圆C与直线交于A,B两点,且,求m的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】代入计算即可.【题目详解】设B点的坐标为,由抛物线方程得,则此时刻拱桥的最高点到水面的距离为2米.故选:D2、D【解题分析】设,,,由向量关系化为坐标关系,再结合抛物线的焦半径公式即可计算【题目详解】由得焦点,准线方程为,设,,由得则,化简得所以故选:D3、D【解题分析】由题意设直线的方程为,然后将点代入直线中,可求出的值,从而可得直线的方程【题目详解】因为直线与互相平行,所以设直线的方程为,因为直线过点,所以,得,所以直线的方程为,故选:D4、D【解题分析】由抛物线的准线方程即可求解【题目详解】由抛物线方程得:.所以,抛物线的准线方程为故选D【题目点拨】本题主要考查了抛物线的准线方程,属于基础题5、A【解题分析】根据的方向向量求得斜率.【题目详解】且是直线的方向向量,.故选:A6、A【解题分析】根据可知,数列具有周期性,即可解出【题目详解】因为,所以,即,所以数列中的项具有周期性,,由,,依次对赋值可得,,一个周期内项的和为零,而,所以数列的前2022项和故选:A7、D【解题分析】先求导数,得切线的斜率,再根据点斜式得切线方程.【题目详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.8、D【解题分析】由斜率得倾斜角【题目详解】直线的斜率为,所以倾斜角为30°.故选:D9、C【解题分析】直接按程序框图运行即可求出结果.【题目详解】初始化数值,,第一次执行循环体,,,1≥4不成立;第二次执行循环体,,,2≥4不成立;第三次执行循环体,,,3≥4不成立;第四次执行循环体,,,4≥4成立;输出故选:C10、D【解题分析】首先求出、,再根据回归直线方程必过样本中心点,即可求出,再根据回归直线方程的性质一一判断即可;【题目详解】解:因为,,与回归直线方程,恒过定点,,解得,故A正确,所以回归直线方程为,即售价变量每增加1个单位时,销售变量大约减少3.2个单位,故B正确;当时,即当时,的估计值为12.8,故C正确;因为回归直线方程为,所以销售量与售价成负相关,故D错误;故选:D11、C【解题分析】利用导数公式及运算法则求得,再求解【题目详解】因为,所以,所以故选:C12、B【解题分析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【题目详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、②④【解题分析】由已知可得,可求,,从而判断①②,求出△的面积可判断③,设,,利用面积求出点的坐标,再求边长,求出可判断④【题目详解】解:设,,,,可得,,两式相减可得,由题意可得,且,,,,,,故②正确;的焦点到渐近线的距离为1,设到渐近线的距离为,则,即,,故①错误,,若,不妨设在右支上,,又,,则的面积为,故③不正确;设,,,,将代入双曲线,得,,根据双曲线的对称性,不妨取点的坐标为,,,,,为钝角,为钝角三角形.故④正确故答案为:②④14、5【解题分析】,15、①③④【解题分析】通过m,n的取值判断焦点坐标所在轴,判断①,求出圆的半径判断②;通过求解双曲线的渐近线方程,判断③;利用,,判断曲线是否是两条直线判断④【题目详解】解:①若,则,因为方程化为:,焦点坐标在y轴,所以①正确;②若,则C是圆,其半径为:,不一定是,所以②不正确;③若,则C是双曲线,其渐近线方程为,化简可得,所以③正确;④若,,方程化为,则C是两条直线,所以④正确;故答案为:①③④16、【解题分析】利用函数的解析式由内到外逐层计算可得的值.【题目详解】,,因此,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)存在,点P为棱SD靠近点D的三等分点【解题分析】(1)由的面积为1,得到,,由,点P为SD的中点,所以,同理可得,根据线面垂直的判断定理可得平面PAC,再由面面垂直的判断定理可得答案;(2)存在,分别以OB,OC,OS所在直线为x,y,z轴,建立空间直角坐标系,假设在棱SD上存在点P,设,求出平面PAC、平面ACD的一个法向量,由二面角的向量法可得答案.【小问1详解】因为点S在底面ABCD上的射影为O,所以平面ABCD,因为四边形ABCD是边长为的正方形,所以,又因为的面积为1,所以,,所以,因为,点P为SD的中点,所以,同理可得,因为,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小问2详解】存在,连接,由平面ABCD,平面ABCD,平面ABCD,又,可得两两垂直,分别以所在直线为x,y,z轴,建立空间直角坐标系,如图,则,,,,假设在棱SD上存在点P使二面角的余弦值为,设,,,所以,,设平面PAC的一个法向量为,则,因为,,所以,令,得,,因为平面ACD的一个法向量为,所以,化简得,解得或(舍),所以存在P点符合题意,点P为棱SD靠近点D的三等分点18、(1),;(2)最小值为0,最大值为4.【解题分析】(1)对求导,根据在时有极值0,得到,再求出,的值;(2)由(1)知,,然后判断的单调性,再求出的值域【题目详解】解:(1),由题知:联立(1)、(2)有(舍)或.当时在定义域上单调递增,故舍去;所以,,经检验,符合题意(2)当,时,故方程有根或由,得或由得,函数的单调增区间为:,,减区间为:.函数在取得极大值,在取极小值;经计算,,,,所以最小值为0,最大值为4.19、(1)x2=2y;(2)证明见解析【解题分析】(1)利用抛物线的定义进行求解即可;(2)设直线l的直线方程与抛物线方程联立,根据一元二次方程根与系数关系、斜率公式进行证明即可.【小问1详解】∵点N(t,1)在抛物线C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴抛物线C的方程为x2=2y;【小问2详解】依题意,设直线l:y=kx+1,A(x1,y1),B(x2,y2),联立,得x2﹣2kx﹣2=0.则x1x2=﹣2,∴.故k1k2为定值.【题目点拨】关键点睛:利用抛物线的定义是解题的关键.20、(1)答案见解析;(2);失效费为6.3万元【解题分析】(1)根据相关系数公式计算出相关系数可得结果;(2)根据公式求出和可得关于的线性回归方程,再代入可求出结果.【题目详解】(1)由题意,知,,∴结合参考数据知:因为与的相关系数近似为0.99,所以与的线性相关程度相当大,从而可以用线性回归模型拟合与的关系(2)∵,∴∴关于的线性回归方程为,将代入线性回归方程得万元,∴估算该种机械设备使用8年的失效费为6.3万元21、或【解题分析】先假设命题、为真,分别求得实数的取值范围,再由命题、具体的真假,取实数的取值范围或其补集,最终确定实数的取值范围.【题目详解】若命题p为真,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026河北省气象局招聘应届毕业生10人(第2602号)历年真题汇编带答案解析
- 2025中铁建重庆石化销售有限公司加油站招聘加油员4人历年真题库带答案解析
- 巴中市2025年第九批就业见习岗位历年真题汇编及答案解析(夺冠)
- 2025江西萍乡市人民医院招聘编外人员(第三批)4人历年真题库附答案解析
- 2025广东汕头市潮阳区卫健系统招聘医学类专业技术人员笔试历年真题库附答案解析
- 2025海南三亚口腔医学中心(考核)招聘事业编制及员额制人员76人(第1号)备考题库带答案解析
- 2025云南昆明高新区高新实验高中招聘30人备考题库带答案解析
- 2025贵州毕节市赫章县部分机关事业单位面向全县考调58人参考题库附答案解析
- 2025四川天府银行社会招聘(遂宁)笔试备考试卷带答案解析
- 2025四川天府银行社会招聘(南充)模拟试卷附答案解析
- 心电图质量管理制度
- 王玮交通工程学课件
- 2025湖北水发集团园招聘40人笔试参考题库附带答案详解析集合
- 厂区进出大门管理制度
- 中级出版专业资格考试《出版专业基础知识》真题卷(2025年新版解析)
- 公司三年发展战略规划书(2025年-2025年)
- 2025年《三级老年人能力评估师》考试练习题库及参考答案
- 水毁通村路修复施工组织设计
- 银行业信贷合同管理试题及答案2025年讨论
- 《疫苗研发与制备实验》课件
- 联合派遣合同协议
评论
0/150
提交评论