版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省黔南布依族苗族自治州都匀市第一中学2024年高二数学第一学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线E的渐近线为,则其离心率为()A. B.C. D.或2.已知,若,是第二象限角,则=()A. B.5C. D.103.设,则当数列{an}的前n项和取得最小值时,n的值为()A.4 B.5C.4或5 D.5或64.已知椭圆的左、右焦点分别为、,点在椭圆上,若,则的面积为()A. B.C. D.5.椭圆的离心率为()A B.C. D.6.等差数列的公差,且,,则的通项公式是()A. B.C. D.7.已知等比数列的前n项和为,且满足公比0<q<1,<0,则下列说法不正确的是()A.一定单调递减 B.一定单调递增C.式子-≥0恒成立 D.可能满足=,且k≠18.已知等差数列的前项和为,,,,则的值为()A. B.C. D.9.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则的值为()A.1225 B.1275C.1326 D.136210.已知圆,过点P的直线l被圆C所截,且截得最长弦的长度与最短弦的长度比值为5∶4,若O为坐标原点,则最大值为()A.3 B.4C.5 D.611.若数列是等差数列,其前n项和为,若,且,则等于()A. B.C. D.12.直线的斜率是方程的两根,则与的位置关系是()A.平行 B.重合C.相交但不垂直 D.垂直二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,,若,,使得,则实数a的取值范围是______14.直线与圆相交于A,B两点,则的最小值为__________.15.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.他们根据沙粒或小石子所排列的形状把数分成许多类,下图中第一行的称为三角形数,第二行的称为五边形数,则三角形数的第10项为__________,五边形数的第项为__________.16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.5三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线.(1)若,求直线与直线交点坐标;(2)若直线与直线垂直,求a的值.18.(12分)已知等差数列的前项和为,,.(1)求的通项公式;(2)设数列的前项和为,用符号表示不超过x的最大数,当时,求的值.19.(12分)命题p:直线l:与圆C:有公共点,命题q:双曲线的离心率(1)若p,q均为真命题,求实数m的取值范围;(2)若为真,为假,求实数m的取值范围20.(12分)已知椭圆长轴长为4,A,B分别为左、右顶点,P为椭圆上不同于A,B的动点,且点在椭圆上,其中e为椭圆的离心率(1)求椭圆的标准方程;(2)直线AP与直线(m为常数)交于点Q,①当时,设直线OQ的斜率为,直线BP的斜率为.求证:为定值;②过Q与PB垂直的直线l是否过定点?如果是,请求出定点坐标;如果不是,请说明理由21.(12分)在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.22.(10分)已知双曲线的左,右焦点为,离心率为.(1)求双曲线C的渐近线方程;(2)过作斜率为k的直线l分别交双曲线的两条渐近线于A,B两点,若,求k的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】根据双曲线标准方程与渐近线的关系即可求解.【题目详解】当双曲线焦点在x轴上时,渐近线为,故离心率为;当双曲线焦点在y轴上时,渐近线为,故离心率为;故选:D.2、D【解题分析】先由诱导公式及同角函数关系得到,再根据诱导公式化简,最后由二倍角公式化简求值即可.【题目详解】∵,∴,∵是第二象限角,∴,∴故选:D3、A【解题分析】结合等差数列的性质得到,解不等式组即可求出结果.【题目详解】由,即,解得,因为,故.故选:A.4、B【解题分析】求出,可知为等腰三角形,取的中点,可得出,利用勾股定理求得,利用三角形的面积公式可求得结果.【题目详解】在椭圆中,,,则,所以,,由椭圆的定义可得,取的中点,因为,则,由勾股定理可得,所以,.故选:B.5、D【解题分析】根据椭圆方程先写出标准方程,然后根据标准方程写出便可得到离心率.【题目详解】解:由题意得:,,故选:D6、C【解题分析】由于数列为等差数列,所以,再由可得可以看成一元二次方程的两个根,由可知,所以,从而可求出,可得到通项公式.【题目详解】解:因为数列为等差数列,所以,因为,所以可以看成一元二次方程的两个根,因为,所以,所以,解得,所以故选:C【题目点拨】此题考查的是等差数列的通项公式和性质,属于基础题.7、D【解题分析】根据等比数列的通项公式,前n项和的意义,可逐项分析求解.【题目详解】因为等比数列的前n项和为,且满足公比0<q<1,<0,所以当时,由可得,故数列为增函数,故B正确;由0<q<1,<0知,所以,故一定单调递减,故A正确;因为当时,,,所以,即-,当时,,综上,故C正确;若=,且k≠1,则,即,因为,故,故矛盾,所以D不正确.故选:D8、A【解题分析】由可求得,利用可构造方程求得.【题目详解】,,,,,解得:.故选:A.9、B【解题分析】观察前4项可得,从而可求得结果【题目详解】由题意可得,……,观察规律可得,所以,故选:B10、C【解题分析】由题意,点P在圆C内,且最长弦的长度为直径长10,则最短弦的长度为8,进而可得,所以点P的轨迹为以C为圆心,半径为3的圆,从而即可求解.【题目详解】解:由题意,圆,所以圆C是以为圆心,半径为5的圆,因为过点P的直线l被圆C所截,且截得最长弦的长度与最短弦的长度比值为5∶4,所以点P在圆C内,且最长弦的长度为直径长10,则最短弦的长度为8,所以由弦长公式有,所以点P的轨迹为以C为圆心,半径为3的圆,所以,故选:C.11、B【解题分析】由等差数列的通项公式和前项和公式求出的首项和公差,即可求出.【题目详解】设等差数列的公差为,则解得:,所以.故选:B.12、C【解题分析】由韦达定理可得方程的两根之积为,从而可知直线、的斜率之积为,进而可判断两直线的位置关系【题目详解】设方程的两根为、,则直线、的斜率,故与相交但不垂直故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】先求出两函数在上的值域,再由已知条件可得,且,列不等式组可求得结果【题目详解】由,得,当时,,所以在上单调递减,所以,即,由,得,当时,,所以在上单调递增,所以,即,因为,,使得,所以,解得,故答案为:14、【解题分析】直线过定点,圆心,当时,取得最小值,再由勾股定理即可求解.【题目详解】由,得,由,得直线过定点,且在圆的内部,由圆可得圆心,半径,当时,取得最小值,圆心与定点的距离为,则的最小值为.故答案为:.15、①.②.【解题分析】对于三角形数,根据图形寻找前后之间的关系,从而归纳出规律利用求和公式即得,对于五边形数根据图形寻找前后之间的关系,然后利用累加法可得通项公式.【题目详解】由题可知三角形数的第1项为1,第2项为3=1+2,第3项为6=1+2+3,第4项为10=1+2+3+4,,因此,第10项为;五边形数的第1项为,第2项为,第3项为,第4项为,…,因此,,所以当时,,当时也适合,故,即五边形数的第项为.故答案为:55;.16、25【解题分析】根据表格数据求出,代入,即可求出.【题目详解】解:由题意知:,,将代入线性回归方程,即,解得:.故答案为:5.25.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)联立两直线方程,解方程组即可得解;(2)根据两直线垂直列出方程,解之即可得出答案.【小问1详解】解:当时,直线,联立,解得,即交点坐标为;【小问2详解】解:直线与直线垂直,则,解得.18、(1)(2)9【解题分析】(1)首先根据已知条件分别求出的首项和公差,然后利用等差数列的通项公式求解即可;(2)首先利用等差数列求和公式求出,然后利用裂项相消法和分组求和法求出,进而可求出的通项公式,最后利用等差数列求和公式求解即可.【小问1详解】不妨设等差数列的公差为,故,,解得,,从而,即的通项公式为.【小问2详解】由题意可知,,所以,故,因为当时,;当时,,所以,由可知,,即,解得,即值为9.19、(1),;(2).【解题分析】(1)求出,成立的等价条件,即可求实数的取值范围;(2)若“”为假命题,“”为真命题,则、一真一假,当真假时,求出的取值范围,当假真时,求出的取值范围,然后取并集即可得答案【小问1详解】若命题为真命题,则,解得:,若命题为真命题,则且,,解得,∴,均为真命题,实数的取值范围是,;【小问2详解】若为真,为假,则、一真一假;①当真假时,即“”且“或”,则此时的取值范围是;当假真时,即“或”且“”,则此时的取值范围是;综上,的取值范围是20、(1)(2)①证明见解析;②直线过定点;【解题分析】(1)依题意得到方程组,解得,即可求出椭圆方程;(2)①由(1)可得,,设,,表示出直线的方程,即可求出点坐标,从而得到、,即可求出;②在直线方程中令,即可得到的坐标,再求出直线的斜率,即可得到直线的方程,从而求出定点坐标;【小问1详解】解:依题意可得,即,解得或(舍去),所以,所以椭圆方程为【小问2详解】解:①由(1)可得,,设,,则直线的方程为,令则,所以,,所以,又点在椭圆上,所以,即,所以,即为定值;②因为直线的方程为,令则,因为,所以,所以直线的方程为,即又,所以,令,解得,所以直线过定点;21、(1)(2)【解题分析】(1)先求出AB的斜率,再利用点斜式写出方程即可;(2)先求出,再求出C到AB的距离即可得到答案.【小问1详解】由已知,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丽水市中医院导管冲管技术专项考核
- 吉安市人民医院尿动力学检查操作与报告解读考核
- 盐城市人民医院腹水鉴别诊断思维训练与考核试题
- 青岛市人民医院电极放置规范考核
- 丽水市中医院统计软件应用考核
- 门窗城开业活动方案
- 门店人员活动策划方案
- 阿胶活动策划方案
- 附近班级活动方案
- 问诊专家活动方案
- 第2课黄河文化网上搜(课件)泰山版信息技术三年级上册
- 乡土特色劳动教育的社会功能
- 安全生产方案计划
- 期中 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 高一地理教学计划高一地理(人教版2019必修一)
- DB13(J)-T 8318-2019 双面沟槽复合保温板应用技术规程(2024年版)
- 《热气球上升的秘密》教学课件
- 林地承包种植合同范本
- 浙教版(2023)四下信息科技第1课《初探数字化》教学设计
- DL-T-1798-2018换流变压器交接及预防性试验规程
- 2024届天津市十二区县重点校高三下学期第一次模拟考试历史试题(解析版)
评论
0/150
提交评论