湖南省岳阳市临湘市詹桥镇中学2022年高二数学文摸底试卷含解析_第1页
湖南省岳阳市临湘市詹桥镇中学2022年高二数学文摸底试卷含解析_第2页
湖南省岳阳市临湘市詹桥镇中学2022年高二数学文摸底试卷含解析_第3页
湖南省岳阳市临湘市詹桥镇中学2022年高二数学文摸底试卷含解析_第4页
湖南省岳阳市临湘市詹桥镇中学2022年高二数学文摸底试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省岳阳市临湘市詹桥镇中学2022年高二数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.定积分=(

)A.

B.

C.

D.

参考答案:D2.已知在三棱锥P﹣ABC中,PA=PB=PC=1,AB=,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一球面上,则该球的表面积为()A. B.3π C. D.2π参考答案:B【考点】LR:球内接多面体;LG:球的体积和表面积.【分析】求出P到平面ABC的距离,AC为截面圆的直径,由勾股定理可得R2=()2+d2=()2+(﹣d)2,求出R,即可求出球的表面积.【解答】解:由题意,AC为截面圆的直径,AC=,设球心到平面ABC的距离为d,球的半径为R,∵PA=PB=1,AB=,∴PA⊥PB,∵平面PAB⊥平面ABC,∴P到平面ABC的距离为.由勾股定理可得R2=()2+d2=()2+(﹣d)2,∴d=0,R2=,∴球的表面积为4πR2=3π.故选:B3.在直角三角形ABC中,AB=4,AC=2,M是斜边BC的中点,则向量在向量方向上的投影是

(

)A.1

B.-1

C.

D.-参考答案:D4.

已知条件,条件,则是的(

).

A.充分而不必要条件

B.必要而不充分条件

C.充要条件

D.即不充分也不必要条件`参考答案:A5.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是(

)A.

B.

C.

D.参考答案:C6.已知在平面直角坐标系xoy中,曲线C的参数方程为,M是曲线C上的动点.以原点O为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,若曲线T的极坐标方程为,则点M到点T的距离的最大值为(

)A. B. C. D.参考答案:A【分析】首先求出曲线T的直角坐标系方程,设点,求出点M到直线T的距离,利用三角函数即可求出点M到直线T的距离的最大值。【详解】由曲线T的极坐标方程为,可得曲线T的直角坐标方程为,由于点M为曲线C的一个动点,故设点,则点M到直线T的距离:所以当时,距离最大,点M到直线T的距离的最大值为;故答案选A【点睛】本题考查极坐标与参数方程的相关知识,考查推理论证能力、运算求解能力,属于中档题。7.圆的半径为(

参考答案:D略8.在证明命题“对于任意角,”的过程:“”中应用了()A.分析法

B.综合法 C.分析法和综合法综合使用

D.间接证法参考答案:B略9.回归分析中,相关指数的值越大,说明残差平方和A.越小

B.越大

C.可能大也可能小

D.以上都不对参考答案:A略10.的展开式中的常数项是(

)A.84

B.

C.

D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.从5名学生中任选4名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有1人参加。若甲参加,但不参加生物竞赛,则不同的选择方案共有

种。参考答案:12.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是

.参考答案:b<a<c【考点】指数函数的图象与性质.【分析】利用指数函数和幂函数的单调性,可判断三个式子的大小.【解答】解:函数y=0.6x为减函数;故a=0.60.6>b=0.61.5,函数y=x0.6在(0,+∞)上为增函数;故a=0.60.6<c=1.50.6,故b<a<c,故答案为:b<a<c13.双曲线的离心率为________________.参考答案:略14.如图,正方体的棱长为,为的中点,为线段上的动点,过点,,的平面截该正方体所得的截面为,则下列命题正确的是__________(写出所有正确命题的编号).①当时,为四边形;②当时,为等腰梯形;③当时,与的交点满足;④当时,为五边形;⑤当时,的面积为.参考答案:①②④①项,时,为,而时,线段上同理,存在一点,与平行,此时,为四边形,且是梯形,故命题①为真;②项,,,是等腰梯形,故命题②为真;③项当时,如图所示,,∵点是的中点,∴,∴,∴与的交点满足,故命题③为假.④项,如图所示,为五边形,故命题④为真;⑤项,如图所示,为菱形,面积为,故命题⑤为假.综上所述,命题正确的是:①②④.15.设,若直线与轴相交于点A,与y轴相交于B,且与圆相交所得弦的长为2,O为坐标原点,则面积的最小值为

。参考答案:316.(本小题满分13分)半径为10cm的球被两个平行平面所截,两个截面圆的面积分别为36πcm2,64πcm2,求这两个平行平面的距离.参考答案:解:设两个截面圆的半径分别为r1、r2,球心O到截面的距离分别为d1、d2,球的半径为R.由πr=36π,得r=36,由πr=64π,得r=64.……(5分)如图(甲)所示,当球的球心在两个平行平面的外侧时,这两个平面间的距离为球心与两个截面圆的距离之差,如图(乙)所示,当球的球心在两个平行平面之间时,这两个平面间的距离为球心与两个截面圆的距离之和略17.已知两直线,,当__________时,有∥。参考答案:1略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)求证:.(2)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:sin213°+cos217°﹣sin13°cos17°;sin215°+cos215°﹣sin15°cos15°;sin218°+cos212°﹣sin18°cos12°;sin2(﹣18°)+cos248°﹣sin(﹣18°)cos48°;sin2(﹣25°)+cos255°﹣sin(﹣25°)cos55°.①试从上述五个式子中选择一个,求出这个常数;②根据①的计算结果,将该同学的发现推广为三角恒等式.参考答案:【考点】F4:进行简单的合情推理.【分析】(1)两边平方证明即可;(2)①根据同角的三角函数的关系以及二倍角公式计算即可;②根据计算结果推广公式即可.【解答】(1)证明:要证明成立,只需证明,…即,即…从而只需证明即24<30,这显然成立.这样,就证明了…(2)解:①选择(2)式,计算如下:sin215°+cos215°﹣sin15°cos15°=1﹣sin30°=1﹣=.…②三角恒等式为sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)=.…19.(12分)已知直线方程为.

(1)证明:不论为何实数,直线恒过定点.

(2)直线m过(1)中的定点且在两坐标轴的截距的绝对值相等,求满足条件的直线m方程.参考答案:(1)证明:

--------2分

故直线过定点

----------------5分

(2)解:当截距为0时,直线m的方程为

-------7分

当截距不为0时,设直线m的方程为,

-----------------11分

故直线m的方程为.------12分20.(1)若a、b、m、n∈R+,求证:;(2)利用(1)的结论,求下列问题:已知,求的最小值,并求出此时x的值.参考答案:【考点】7F:基本不等式;R6:不等式的证明.【分析】(1)a、b、m、n∈R+,可得(a+b)=m2+n2+,再利用基本不等式的性质即可得出.(2),=+≥,即可得出.【解答】(1)证明:∵a、b、m、n∈R+,∴(a+b)=m2+n2+≥m2+n2+2mn=(m+n)2,当且仅当bm=an时取等号,∴.(2),=+≥=25,当且仅当2(1﹣2x)=3?2x,即当时取得最小值,最小值为25.【点评】本题考查了不等式的性质与解法、方程的解法,考查了推理能力与计算能力,属于中档题.21.已知圆C的圆心在直线x﹣2y﹣3=0上,并且经过A(2,﹣3)和B(﹣2,﹣5),求圆C的标准方程.参考答案:【考点】圆的标准方程.【专题】转化思想;综合法;直线与圆.【分析】线段AB的中垂线所在直线与直线x﹣2y﹣3=0的交点即为圆C的圆心,再求出半径CA的值,即可求得圆的标准方程.【解答】解:由已知,线段AB的中垂线所在直线与直线x﹣2y﹣3=0的交点即为圆C的圆心.线段AB的斜率为:KAB==,∴线段AB的中垂线所在直线的斜率为﹣=﹣2,又∵线段AB的中点为(0,﹣4),∴线段AB的中垂线所在直线方程为:y+4=﹣2x,即2x+y+4=0.由,求得,∴圆C的圆心坐标为(﹣1,﹣2)∴圆C的半径r满足:r2=(2+1)2+(﹣3+2)2=10,∴圆C的标准方程为(x+1)2+(y+2)2=10.【点评】本题主要考查求圆的标准方程,直线的斜率公式,两条直线垂直的性质,求出圆心坐标及半径,是解题的关键,属于基础题.22.新高考,取消文理科,实行“3+3”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在[15,45)称为中青年,年龄在[45,75)称为中老年),并把调查结果制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数515101055了解4126521

(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面2×2列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?

了解新高考不了解新高考总计中青年

中老年

总计

附:.0.0500.0100.0013.8416.63510.828

(3)若从年龄在[55,65)的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为X,求X的分布列以及.参考答案:(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【分析】(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论