版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市怀仁一中2023年高二上数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条 B.3条C.2条 D.1条2.将点的极坐标化成直角坐标是(
)A. B.C. D.3.是直线与直线互相平行的()条件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要4.边长为的正方形沿对角线折成直二面角,、分别为、的中点,是正方形的中心,则的大小为()A. B.C. D.5.已知正数x,y满足,则取得最小值时()A. B.C.1 D.6.由于受疫情的影响,学校停课,同学们通过三种方式在家自主学习,现学校想了解同学们对假期学习方式的满意程度,收集如图1所示的数据;教务处通过分层抽样的方法抽取4%的同学进行满意度调查,得到的数据如图2.下列说法错误的是()A.样本容量为240B.若,则本次自主学习学生的满意度不低于四成C.总体中对方式二满意学生约为300人D.样本中对方式一满意的学生为24人7.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.8.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,如果输入a=102,b=238,则输出的a的值为()A.17 B.34C.36 D.689.一直线过点,则此直线的倾斜角为()A.45° B.135°C.-45° D.-135°10.函数在定义域上是增函数,则实数m的取值范围为()A. B.C. D.11.已知等比数列的前n项和为,,,则()A. B.C. D.12.过点且与直线平行的直线方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左,右焦点分别为,,过右焦点且倾斜角为直线l与该双曲线交于M,N两点(点M位于第一象限),的内切圆半径为,的内切圆半径为,则为___________.14.已知正方体的棱长为为的中点,为面内一点.若点到面的距离与到直线的距离相等,则三棱锥体积的最小值为__________15.在中,内角,,的对边分别为,,,若,且,则_______16.某厂将从64名员工中用系统抽样的方法抽取4名参加2011年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中最后一个员工的号码是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图在四棱锥中,底面是菱形,,平面平面,,,为的中点,是棱上的一点,且.(1)求证:平面;(2)求二面角的余弦值.18.(12分)已知椭圆的标准方程为:,若右焦点为且离心率为(1)求椭圆的方程;(2)设,是上的两点,直线与曲线相切且,,三点共线,求线段的长19.(12分)如图,在四棱锥PABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.(1)求证:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱锥PADM的体积20.(12分)阅读本题后面有待完善的问题,在下列三个条件:①,②,③中选择一个作为条件,补充在题中横线处,使问题完善,并解答你构造的问题.(如果选择多个关系并分别解答,在不出现逻辑混乱的情况下,按照第一个解答给分).问题:已知命题,,命题___________,若是的充分不必要条件,求实数的取值范围.21.(12分)已知抛物线:()的焦点为,点在上,点在的内侧,且的最小值为(1)求的方程;(2)过点的直线与抛物线交于不同的两点,,直线,(为坐标原点)分别交直线于点,记直线,,的斜率分别为,,,若,求的值22.(10分)如图,在四棱锥中,底面是正方形,侧面底面,为侧棱上一点(1)求证:;(2)若为中点,平面与侧棱于点,且,求四棱锥的体积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用双曲线渐近线的性质,结合一元二次方程根的判别式进行求解即可.【详解】解:双曲线的渐近线方程为,右顶点为.①直线与双曲线只有一个公共点;②过点平行于渐近线时,直线与双曲线只有一个公共点;③设过的切线方程为与双曲线联立,可得,由,即,解得,直线的条数为1.综上可得,直线的条数为4.故选:A,.2、A【解析】本题考查极坐标与直角坐标互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A3、B【解析】求出直线与平行的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】由解得或,当时,与平行,当时,与平行,则直线与直线平行等价于或,所以是直线与直线互相平行的充分而不必要条件.故选:B4、B【解析】建立空间直角坐标系,以向量法去求的大小即可解决.【详解】由题意可得平面,,则两两垂直以O为原点,分别以OB、OA、OC所在直线为x、y、z轴建立空间直角坐标系则,,,,又,则故选:B5、B【解析】根据基本不等式进行求解即可.【详解】因为正数x,y,所以,当且仅当时取等号,即时,取等号,而,所以解得,故选:B6、B【解析】利用扇形统计图和条形统计图可求出结果【详解】选项A,样本容量为,该选项正确;选项B,根据题意得自主学习的满意率,错误;选项C,样本可以估计总体,但会有一定的误差,总体中对方式二满意人数约为,该选项正确;选项D,样本中对方式一满意人数为,该选项正确.故选:B【点睛】本题主要考查了命题真假的判断,考查扇形统计图和条形统计图等基础知识,考查运算求解能力,属于中档题7、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.8、B【解析】根据程序框图所示代入运行即可.【详解】初始输入:;第一次运算:;第二次运算:;第三次运算:;第四次运算:;结束,输出34.故选:B.9、A【解析】根据斜率公式求得直线的斜率,得到,即可求解.【详解】设直线的倾斜角为,由斜率公式,可得,即,因为,所以,即此直线的倾斜角为.故选:A.10、A【解析】根据导数与单调性的关系即可求出【详解】依题可知,在上恒成立,即在上恒成立,所以故选:A11、A【解析】由,可得等比数列公比q=2,利用等比数列求和公式和通项公式即可求.【详解】设等比数列的公比为q,则,.故选:A.12、A【解析】由题意设直线方程为,根据点在直线上求参数即可得方程.【详解】由题设,令直线方程为,所以,可得.所以直线方程为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】设,,,利用双曲线的定义可得,作出图形,结合图形分析,可知与直线的倾斜角相等,利用直角三角形中的边角关系,即求.【详解】设的内切圆为圆,与三边的切点分别为,如图所示,设,,,设的内切圆为圆,由双曲线的定义可得,得,由此可知,在中,轴于点,同理可得轴于点,所以轴,过圆心作的垂线,垂足为,因为,所以,∴,即∴,即故答案为:.【点睛】关键点点睛,得到是关键,说明轴,同时直线的倾斜角与大小相等,计算即得.14、##【解析】由题意可知,点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面建立平面直角坐标系,求出抛物线方程,直线的方程,将直线向抛物线平移,恰好与抛物线相切时,切点为点,此时的面积最小,则三棱锥体积的最小【详解】因为为面内一点,且点到面的距离与到直线的距离相等,所以点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面,以所在的直线为轴,以的中垂线为轴建立平面直角坐标系,则,设抛物线方程为,则,得,所以抛物线方程为,,直线的方程为,即,设与直线平行且与抛物线相切的直线方程为,由,得,由,得,所以与抛物线相切的直线为,此时切点为,且的面积最小,因为点到直线的距离为,所以的面积的最小值为,所以三棱锥体积的最小值为,故答案为:15、【解析】代入,展开整理得,①化为,与①式相加得,转化为关于的方程,求解即可得出结论.【详解】因为,所以,所以,因为,所以,则,整理得,解得.故答案为:.【点睛】本题考查正弦定理的边角互化,考查三角函数化简求值,属于中档题.16、40【解析】结合系统抽样的抽样方法来确定最后抽取的号码.【详解】因为分段间隔为,故最后一个员工的号码为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)推导出PQ⊥AD,从而PQ⊥平面ABCD,连接AC,交BQ于N,连接MN,则AQ∥BC,推导出MN∥PA,由此能证明PA∥平面BMQ(2)连结BD,以Q为坐标原点,以QA、QB、QP分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角M﹣BQ﹣P的余弦值【详解】(1)由已知PA=PD,Q为AD的中点,∴PQ⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PQ⊂面PAD,∴PQ⊥平面ABCD,连接AC,交BQ于N,连接MN,∵底面ABCD是菱形,∴AQ∥BC,∴△ANQ∽△BCN,,又,∴,∴MN∥PA,又MN⊂平面BMQ,PA⊄平面BMQ,∴PA∥平面BMQ(2)连结BD,∵底面底面是菱形,∴△ABD是正三角形,∴由(1)知PQ⊥平面ABCD,∴PQ⊥AD,PQ⊥BQ,以Q为坐标原点,以QA、QB、QP分别为x轴,y轴,z轴,建立空间直角坐标系,则Q(0,0,0),A(1,0,0),B(0,,0),P(0,0,),设平面BMQ的法向量=(x,y,z),∴,由(1)知MN∥PA,∴,∴,取z=1,得,平面BQP的法向量,设二面角M﹣BQ﹣P的平面角为θ,则cosθ=,∴二面角M﹣BQ﹣P的余弦值为18、(1);(2).【解析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为,讨论直线的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可.【详解】(1)由题意,椭圆半焦距且,则,又,∴椭圆方程为;(2)由(1)得,曲线为当直线的斜率不存在时,直线,不合题意:当直线的斜率存在时,设,又,,三点共线,可设直线,即,由直线与曲线相切可得,解得,联立,得,则,,∴.19、(1)证明见解析;(2).【解析】(1)过M作MN∥CD交PD于点N,证明四边形ABMN为平行四边形,即可证明BM∥平面PAD.(2)过B作AD的垂线,垂足为E,证明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱锥P-ADM的体积.【详解】解:(1)证明:如图,过M作MN∥CD交PD于点N,连接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四边形ABMN为平行四边形∴BM∥AN.又BM⊄平面PAD,AN⊂平面PAD∴BM∥平面PAD.(2)如图,过B作AD的垂线,垂足为E.∵PD⊥平面ABCD,BE⊂平面ABCD∴PD⊥BE.又AD⊂平面PAD,PD⊂平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴点M到平面PAD的距离等于点B到平面PAD的距离,即BE.连接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=则三棱锥PADM的体积VP-ADM=VM-PAD=×S△PAD×BE=×3×=.20、【解析】分别在、和的情况下得命题对应的集合;选条件后可求得命题对应的集合;根据充分不必要条件的定义可知,分别在、和的情况下得到结果.【详解】由得:,当时,不等式解集;当时,不等式解集为;当时,不等式解集为;是的充分不必要条件,命题对应集合是命题对应集合的真子集,即;若选条件①:由得:,;若选条件②:由得:,解得:,;若选条件③:由得:,解得:,;当时,,符合题意;当时,由知:,;当时,由知:,;综上所述:,即实数的取值范围为.21、(1)(2)【解析】(1)先求出抛物线的准线,作于由抛物线的定义,可得,从而当且仅当,,三点共线时取得最小,得出答案.(2)设,,设:与抛物线方程联立,得出韦达定理,设出直线的方程分别与直线的方程联立得出点的坐标,进一步得到,的表达式,由条件可得答案.【小问1详解】的准线为:,作于,则,所以,因为点在的内侧,所以当且仅当,,三点共线时取得最小值,所以,解得,所以的方程为【小问2详解】由题意可知的斜率一定存在,且不为0,设:(),联立消去得,由,即,得,结合,知记,,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030绿色建筑认证体系演变及低碳材料投资价值研究
- 露天矿山零违章活动方案
- 钓鱼年会活动方案
- 酒店环保活动策划方案
- 铁板饭店活动方案
- 阳城镇扶贫日活动方案
- 长征纪念活动方案
- 露营客户回馈活动方案
- 防火宣传活动方案
- 金山区建设保洁活动方案
- 智能检测未来发展趋势报告
- CJT235-2006 立式长轴泵(标准规范)
- 联轴器的调整与装配
- 2024年创业计划书篮球馆
- 01《有朋自远方来》精讲课件-七年级语文上册综合性学习精讲课件知识清单真题演练
- 《夏洛特的网》生词表
- 2023年工会财务知识竞赛题库及答案(完整版)
- 高层建筑调研报告
- 最优化理论与算法完整版课件陈宝林课件
- 婚姻家庭咨询师职业技能鉴定考试题库(附答案)
- 尺寸公差形位公差
评论
0/150
提交评论