




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省吉林油田实验中学数学高一第二学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设为等比数列的前n项和,若,则()A.-11 B.-8 C.5 D.112.在锐角三角形中,,,分别为内角,,的对边,已知,,,则的面积为()A. B. C. D.3.已知a,b,c,d∈R,则下列不等式中恒成立的是()A.若a>b,c>d,则ac>bd B.若a>b,则C.若a>b>0,则(a﹣b)c>0 D.若a>b,则a﹣c>b﹣c4.过点且与直线垂直的直线方程为()A. B.C. D.5.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.6.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.7.设,则比多了()项A. B. C. D.8.若满足条件C=60°,AB=,BC=的△ABC有()个A.
B. C.
D.39.设函数,若关于的方程恰有个不同的实数解,则实数的取值范围为()A. B. C. D.10.已知角是第三象限的角,则角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则与的夹角等于___________.12.已知满足约束条件,则的最大值为__13.关于函数有下列命题:①由可得必是的整数倍;②的图像关于点对称,其中正确的序号是____________.14.若首项为,公比为()的等比数列满足,则的取值范围是________.15.将角度化为弧度:________.16.直棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在数列中,,,且满足,.(1)求数列的通项公式;(2)设,,求数列的前项和.18.已知数列中,.(1)求证:是等比数列,求数列的通项公式;(2)已知:数列,满足①求数列的前项和;②记集合若集合中含有个元素,求实数的取值范围.19.已知正项等比数列中,,,等差数列中,,且.(1)求数列的通项公式;(2)求数列的前项和.20.已知数列,,满足,,,.(1)设,求数列的通项公式;(2)设,求数列,的前n项和.21.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】设数列{an}的公比为q.由8a2+a5=0,得a1q(8+q3)=0.又∵a1q≠0,∴q=-2.∴===-11.故选A.2、D【解题分析】由结合题意可得:,故,△ABC为锐角三角形,则,由题意结合三角函数的性质有:,则:,即:,则,由正弦定理有:,故.本题选择D选项.点睛:在解决三角形问题中,求解角度值一般应用余弦定理,因为余弦定理在内具有单调性,求解面积常用面积公式,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.3、D【解题分析】
根据不等式的性质判断.【题目详解】当时,A不成立;当时,B不成立;当时,C不成立;由不等式的性质知D成立.故选D.【题目点拨】本题考查不等式的性质,不等式的性质中,不等式两边乘以同一个正数,不等式号方向不变,两边乘以同一个负数,不等式号方向改变,这个性质容易出现错误:一是不区分所乘数的正负,二是不区分是否为1.4、A【解题分析】
先根据求出与之垂直直线的斜率,再利用点斜式求得直线方程。【题目详解】由可得直线斜率,根据两直线垂直的关系,求得,再利用点斜式,可求得直线方程为,化简得,选A【题目点拨】当直线斜率存在时,直线垂直的斜率关系为5、D【解题分析】
由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【题目详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解题分析】
设正方形的边长为,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率.【题目详解】设正方形的边长为,则阴影部分由三个小等腰直角三角形构成,则正方形的对角线长为,则等腰直角三角形的边长为,对应每个小等腰三角形的面积,则阴影部分的面积之和为,正方形的面积为,若在此正方形中任取一点,则此点取自黑色部分的概率为,故选:B.【题目点拨】本题考查面积型几何概型概率公式计算事件的概率,解题的关键在于计算出所求事件对应区域的面积和总区域的面积,考查计算能力,属于中等题.7、C【解题分析】
可知中共有项,然后将中的项数减去中的项数即可得出答案.【题目详解】,则中共有项,所以,比多了的项数为.故选:C.【题目点拨】本题考查数学归纳法的应用,解题的关键就是计算出等式中的项数,考查分析问题和解决问题的能力,属于中等题.8、C【解题分析】
通过判断与c判断大小即可得到知道三角形个数.【题目详解】由于,所以△ABC有两解,故选C.【题目点拨】本题主要考查三角形解得个数判断,难度不大.9、B【解题分析】
由已知中函数,若关于的方程恰有个不同的实数解,可以根据函数的图象分析出实数的取值范围.【题目详解】函数的图象如下图所示:关于的方程恰有个不同的实数解,令t=f(x),可得t2﹣at+2=0,(*)则方程(*)的两个解在(1,2],可得,解得,故选:B.【题目点拨】本题考查的知识点是根的存在性及根的个数判断,其中根据已知中函数的解析式,画出函数的图象,再利用数形结合是解答本题的关键.10、D【解题分析】
可采取特殊化的思路求解,也可将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的即为所求区域.【题目详解】(方法一)取,则,此时角为第二象限的角;取,则,此时角为第四象限的角.(方法二)如图,先将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的区域即为角的终边所在的区域,故角为第二或第四象限的角.故选:D【题目点拨】本题主要考查了根据所在象限求所在象限的方法,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用再结合已知条件即可求解【题目详解】由,即,故答案为:【题目点拨】本题考查向量的夹角计算公式,在考题中应用广泛,属于中档题12、【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【题目详解】由约束条件作出可行域,如图所示,化目标函数为,由图可得,当直线过时,直线在轴上的截距最大,所以有最大值为.故答案为1.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.13、②【解题分析】
对①,可令求出的通式,再进行判断;对②,将代入检验是否为0即可【题目详解】对①,令得,可令,,①错;对②,当时,,②对故正确序号为:②故答案为②【题目点拨】本题考查三角函数的基本性质,属于基础题14、【解题分析】
由题意可得且,即且,,化简可得由不等式的性质可得的取值范围.【题目详解】解:,故有且,化简可得且即故答案为:【题目点拨】本题考查数列极限以及不等式的性质,属于中档题.15、【解题分析】
根据角度和弧度的互化公式求解即可.【题目详解】.故答案为:.【题目点拨】本题考查角度和弧度的互化公式,属于基础题.16、【解题分析】试题分析:画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,MN,OB,∴MNOB,∴MN0B是平行四边形,∴BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB==,在△ANO中,由余弦定理得:cos∠ANO===.故答案为.考点:异面直线及其所成的角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)由题意知,数列是等差数列,可设该数列的公差为,根据题中条件列方程解出的值,再利用等差数列的通项公式可求出数列的通项公式;(2)先求出数列的通项公式,并将该数列的通项裂项,然后利用裂项法求出数列的前项和.【题目详解】(1)对任意的,,则数列是等差数列,设该数列的公差为,则,解得,;(2),因此,.【题目点拨】本题考查等差数列的通项公式,同时也考查了裂项求和法,解题时要熟悉等差数列的几种判断方法,同时也要熟悉裂项求和法对数列通项结构的要求,考查运算求解能力,属于中等题.18、(1)证明见解析,(2)①②【解题分析】
(1)计算得到:得证.(2)①计算的通项公式为,利用错位相减法得到.②将代入集合M,化简并分离参数得,确定数列的单调性,根据集合中含有个元素得到答案.【题目详解】(1),为等比数列,其中首项,公比为.所以,.(2)①数列的通项公式为①②①-②化简后得.②将代入得化简并分离参数得,设,则易知由于中含有个元素,所以实数要小于等于第5大的数,且比第6大的数大.,,综上所述.【题目点拨】本题考查了数列的证明,数列的通项公式,错位相减法,数列的单调性,综合性强计算量大,意在考查学生的计算能力和综合应用能力.19、(1);(2).【解题分析】
(1)设正项等比数列的公比为q(q>0),由已知列式求得公比,则等比数列的通项公式可求;(2)由,求解等差数列的公差,则数列的前n项和可求.【题目详解】(1)设正项等比数列的公比为q(q>0),由,得,则q=3.;(2)设等差数列的公差为d,由,得,∴d=3.∴数列的前n项和【题目点拨】本题主要考查等差数列的通项公式与求和公式,考查了等比数列的通项公式,意在考查综合应用所学知识解答问题的能力,属于中档题.20、(1)(2)【解题分析】
(1)由数列的递推公式得到和的关系式,进而推导出满足的关系式,进而求得数列的通项公式;(2)的通项公式是由等差数列的项乘以等比数列的项,利用乘公比错位相减法,即可求解数列的前n项和.【题目详解】(1)由题意,知,则,即,又由,所以,所以,所以,,,,.(2)由(1)知:,,,两式相减得:.【题目点拨】本题主要考查数列的递推公式的应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司财务管理流程
- 慢性病患者康复计划
- 家具印刷管理细则
- 心理咨询服务制度实施方案制定计划
- 2025重庆市永川区教育委员会招聘公益性岗位人员1人笔试备考试题及答案解析
- 如何引导初高中学生建立正确的人际交往观念
- 实施仪表工业绿色生产方案
- 园艺养护技巧:花草长寿不难
- 2025兴业银行总行国际业务部交易银行部招聘考试含答案
- 2025下半年北京密云区事业单位招聘62人笔试备考试题及答案解析
- 西语国家概况
- 成人学士学位英语1000个高频必考词汇汇总
- GB/T 5271.29-2006信息技术词汇第29部分:人工智能语音识别与合成
- 全屋定制家居橱柜衣柜整装安装服务规范
- GB/T 28248-2012印制板用硬质合金钻头
- 沥青及沥青混合料试验作业指导书
- 义务教育阶段学生艺术素质测评指标体系小学音乐
- 茶叶生产加工常用表格
- 妊娠合并HIV(医学PPT课件)
- Minitab(高级)
- 工学结合的课程开发与教学设计
评论
0/150
提交评论