甘肃省兰州市甘肃一中2024届数学高一下期末统考模拟试题含解析_第1页
甘肃省兰州市甘肃一中2024届数学高一下期末统考模拟试题含解析_第2页
甘肃省兰州市甘肃一中2024届数学高一下期末统考模拟试题含解析_第3页
甘肃省兰州市甘肃一中2024届数学高一下期末统考模拟试题含解析_第4页
甘肃省兰州市甘肃一中2024届数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省兰州市甘肃一中2024届数学高一下期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中,,,,则()A.1 B. C. D.42.若某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.33.已知数列的通项公式为,则72是这个数列的()A.第7项 B.第8项 C.第9项 D.第10项4.若向量与向量不相等,则与一定()A.不共线 B.长度不相等 C.不都是单位向量 D.不都是零向量5.已知,若,则的值是().A.-1 B.1 C.2 D.-26.在数列{an}中,an=31﹣3n,设bn=anan+1an+2(n∈N*).Tn是数列{bn}的前n项和,当Tn取得最大值时n的值为()A.11 B.10 C.9 D.87.已知为等差数列的前项和,,,则()A.2019 B.1010 C.2018 D.10118.如图是一个正方体的平面展开图,在这个正方体中①②③与为异面直线④以上四个命题中,正确的序号是()A.①②③ B.②④ C.③④ D.②③④9.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B. C. D.10.设,若,则数列是()A.递增数列 B.递减数列C.奇数项递增,偶数项递减的数列 D.偶数项递增,奇数项递减的数列二、填空题:本大题共6小题,每小题5分,共30分。11.设为虚数单位,复数的模为______.12.函数,的递增区间为______.13.等差数列{}前n项和为.已知+-=0,=38,则m=_______.14.已知平面向量,,满足:,且,则的最小值为____.15.在平行六面体中,为与的交点,若存在实数,使向量,则__________.16.已知函数,若对任意都有()成立,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面为正方形,平面,,与交于点,,分别为,的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:∥平面;(Ⅲ)求证:平面.18.如图,四面体中,分别是的中点,,.(1)求证:平面;(2)求三棱锥的体积.19.设等差数列的前n项和为,,.(1)求;(2)设,求数列的前n项和.20.已知函数.(1)求的最小正周期.(2)求在区间上的最小值.21.如图所示,在中,点在边上,,,,.(1)求的值;(2)求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

利用三角形内角和为可求得;利用正弦定理可求得结果.【题目详解】由正弦定理得:本题正确选项:【题目点拨】本题考查正弦定理解三角形,属于基础题.2、B【解题分析】

先由三视图判断该几何体为底面是直角三角形的直三棱柱,由棱柱的体积公式即可求出结果.【题目详解】据三视图分析知,该几何体是底面为直角三角形的直三棱柱,且三棱柱的底面直角三角形的直角边长分别为1和,三棱柱的高为,所以该几何体的体积.【题目点拨】本题主要考查几何体的三视图,由三视图求几何体的体积,属于基础题型.3、B【解题分析】

根据数列的通项公式,令,求得的值,即可得到答案.【题目详解】由题意,数列的通项公式为,令,即,解得或(不合题意),所以是数列的第8项,故选B.【题目点拨】本题主要考查了数列的通项公式的应用,着重考查了运算与求解能力,属于基础题.4、D【解题分析】

由方向相同且模相等的向量为相等向量,再逐一判断即可得解.【题目详解】解:向量与向量不相等,它们有可能共线、有可能长度相等、有可能都是单位向量但方向不相同,但不能都是零向量,即选项A、B、C错误,D正确.故选:D.【题目点拨】本题考查了相等向量的定义,属基础题.5、C【解题分析】

先求出的坐标,再利用向量平行的坐标表示求出c的值.【题目详解】由题得,因为,所以2(c-2)-2×0=0,所以c=2.故选C【题目点拨】本题主要考查向量的坐标计算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解题分析】

由已知得到等差数列的公差,且数列的前11项大于1,自第11项起小于1,由,得出从到的值都大于零,时,时,,且,而当时,,由此可得答案.【题目详解】由,得,等差数列的公差,由,得,则数列的前11项大于1,自第11项起小于1.由,可得从到的值都大于零,当时,时,,且,当时,,所以取得最大值时的值为11.故选:B.【题目点拨】本题主要考查了数列递推式,以及数列的和的最值的判定,其中解答的关键是明确数列的项的特点,着重考查了分析问题和解答问题的能力,属于中档试题.7、A【解题分析】

利用基本元的思想,将已知条件转化为和的形式,列方程组,解方程组求得,进而求得的值.【题目详解】由于数列是等差数列,故,解得,故.故选:A.【题目点拨】本小题主要考查等差数列通项公式和前项和公式的基本量计算,属于基础题.8、D【解题分析】

作出直观图,根据正方体的结构特征进行判断.【题目详解】作出正方体得到直观图如图所示:由直观图可知,与为互相垂直的异面直线,故①不正确;,故②正确;与为异面直线,故③正确;由正方体性质可知平面,故,故④正确.故选:D【题目点拨】本题考查了正方体的结构特征,直线,平面的平行于垂直,属于基础题.9、A【解题分析】

若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质10、C【解题分析】

根据题意,由三角函数的性质分析可得,进而可得函数为减函数,结合函数与数列的关系分析可得答案。【题目详解】根据题意,,则,指数函数为减函数即即即即,数列是奇数项递增,偶数项递减的数列,故选:C.【题目点拨】本题涉及数列的函数特性,利用函数单调性,通过函数的大小,反推变量的大小,是一道中档题目。二、填空题:本大题共6小题,每小题5分,共30分。11、5【解题分析】

利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【题目详解】由题意,复数,则复数的模为.故答案为5【题目点拨】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.12、[0,](开区间也行)【解题分析】

根据正弦函数的单调递增区间,以及题中条件,即可求出结果.【题目详解】由得:,又,所以函数,的递增区间为.故答案为【题目点拨】本题主要考查正弦型函数的单调区间,熟记正弦函数的单调区间即可,属于常考题型.13、10【解题分析】

根据等差数列的性质,可得:+=2,又+-=0,则2=,解得=0(舍去)或=2.则,,所以m=10.14、-1【解题分析】

,,,由经过向量运算得,知点在以为圆心,1为半径的圆上,这样,只要最小,就可化简.【题目详解】如图,,则,设是中点,则,∵,∴,即,,记,则点在以为圆心,1为半径的圆上,记,,注意到,因此当与反向时,最小,∴.∴最小值为-1.故答案为-1.【题目点拨】本题考查平面向量的数量积,解题关键是由已知得出点轨迹(让表示的有向线段的起点都是原点)是圆,然后分析出只有最小时,才可能最小.从而得到解题方法.15、【解题分析】

在平行六面体中把向量用用表示,再利用待定系数法,求得.再求解。【题目详解】如图所示:因为,又因为,所以,所以.故答案为:【题目点拨】本题主要考查了空间向量的基本定理,还考查了运算求解的能力,属于基础题.16、【解题分析】

根据和的取值特点,判断出两个值都是最值,然后根据图象去确定最小值.【题目详解】因为对任意成立,所以取最小值,取最大值;取最小值时,与必为同一周期内的最小值和最大值的对应的,则,且,故.【题目点拨】任何一个函数,若有对任何定义域成立,此时必有:,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解题分析】

(I)通过证明平面来证得平面平面.(II)取中点,连接,通过证明四边形为平行四边形,证得,由此证得∥平面.(III)通过证明平面证得,通过计算证明证得,由此证得平面.【题目详解】证明:(Ⅰ)因为平面,所以.因为,,所以平面.因为平面,所以平面平面.(Ⅱ)取中点,连结,因为为的中点所以,且.因为为的中点,底面为正方形,所以,且.所以,且.所以四边形为平行四边形.所以.因为平面且平面,所以平面.(Ⅲ)在正方形中,,因为平面,所以.因为,所以平面.所以.在△中,设交于.因为,且分别为的中点,所以.所以.设,由已知,所以.所以.所以.所以,且为公共角,所以△∽△.所以.所以.因为,所以平面.【题目点拨】本小题主要考查线面垂直、面面垂直的证明,考查线面平行的证明,考查空间想象能力和逻辑推理能力,属于中档题.18、(1)见解析;(2)【解题分析】

(1)连接,由等腰三角形三线合一,可得,,再勾股定理可得,进而根据线面垂直的判定定理得到平面;(2)根据等积法可得,结合(1)中结论,可得即为棱锥的高,代入棱锥的体积公式,可得答案.【题目详解】证明:(1)连接.,,.,为中点,,,为中点,,,在中,,,,,,即.又,,平面平面.(2)等边的面积为,为中点而,.【题目点拨】本题考查的知识点是直线与平面垂直的判定,棱锥的体积公式,熟练掌握空间直线与直线垂直、直线与平面垂直之间的转化关系是解答的关键,属于中档题.19、(1)(2)【解题分析】

(1)在等差数列中根据,,可求得其首项与公差,从而可求得;(2)可证明为等比数列,利用等比数列的求和公式计算即可.【题目详解】(1);(2),所以.【题目点拨】本题考查等比数列的前项和,着重考查等差数列的性质与通项公式及等比数列的前项和公式,属于基础题.20、(1);(2).【解题分析】试题分析:本题主要考查倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先利用倍角公式将降幂,再利用两角和的正弦公式将化简,使之化简成的形式,最后利用计算函数的最小正周期;(Ⅱ)将的取值范围代入,先求出的范围,再数形结合得到三角函数的最小值.试题解析:(Ⅰ)∵,∴的最小正周期为.(Ⅱ)∵,∴.当,即时,取得最小值.∴在区间上的最小值为.考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值.21、(1)(2)【解题分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论