




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
淮安市重点中学2024届高一数学第二学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的周期为()A. B. C. D.2.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为,第2小组的频数为12,则抽取的学生总人数是()A.24 B.48 C.56 D.643.在正项等比数列中,,为方程的两根,则()A.9 B.27 C.64 D.814.的内角的对边分别为,边上的中线长为,则面积的最大值为()A. B. C. D.5.在平面直角坐标系中,直线与x、y轴分别交于点、,记以点为圆心,半径为r的圆与三角形的边的交点个数为M.对于下列说法:①当时,若,则;②当时,若,则;③当时,M不可能等于3;④M的值可以为0,1,2,3,4,5.其中正确的个数为()A.1 B.2 C.3 D.46.已知则的最小值是()A. B.4 C. D.57..在各项均为正数的等比数列中,若,则…等于()A.5 B.6 C.7 D.88.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为()A.30° B.45° C.60° D.90°9.已知函数(,)的部分图像如图所示,则的值分别是()A. B.C. D.10.记为实数中的最大数.若实数满足则的最大值为()A. B.1 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.12.已知数列满足,则__________.13.点从点出发,沿单位圆顺时针方向运动弧长到达点,则点的坐标为__________.14.已知向量,,若,则实数___________.15.设公差不为零的等差数列的前项和为,若,则__________.16.函数的反函数是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的值;(2)设,求的值.18.已知,(1)求;(2)若,求.19.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.20.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.21.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面CDB1.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
利用二倍角公式以及辅助角公式将函数化为,再利用三角函数的周期公式即可求解.【题目详解】,函数的最小正周期为.故选:D【题目点拨】本题考查了二倍角的余弦公式、辅助角公式以及三角函数的最小正周期的求法,属于基础题.2、B【解题分析】
根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解.【题目详解】由直方图可知,从左到右的前3个小组的频率之和为,又前3个小组的频率之比为,所以第二组的频率为,所以学生总数,故选B.【题目点拨】本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.3、B【解题分析】
由韦达定理得,再利用等比数列的性质求得结果.【题目详解】由已知得是正项等比数列本题正确选项:【题目点拨】本题考查等比数列的三项之积的求法,关键是对等比数列的性质进行合理运用,属于基础题.4、D【解题分析】
作出图形,通过和余弦定理可计算出,于是利用均值不等式即可得到答案.【题目详解】根据题意可知,而,同理,而,于是,即,又因为,代入解得.过D作DE垂直于AB于点E,因此E为中点,故,而,故面积最大值为4,答案为D.【题目点拨】本题主要考查解三角形与基本不等式的相关综合,表示出三角形面积及使用均值不等式是解决本题的关键,意在考查学生的转化能力,计算能力,难度较大.5、B【解题分析】
作出直线,可得,,,分别考虑圆心和半径的变化,结合图形,即可得到所求结论.【题目详解】作出直线,可得,,,①当时,若,当圆与直线相切,可得;当圆经过点,即,则或,故①错误;②当时,若,圆,当圆经过O时,,交点个数为2,时,交点个数为1,则,故②正确;③当时,圆,随着的变化可得交点个数为1,2,0,不可能等于3,故③正确;④的值可以为0,1,2,3,4,不可以为5,故④错误.故选:B.【题目点拨】本题考查命题的真假判断与应用,考查直线和圆的位置关系,考查分析能力和计算能力.6、C【解题分析】
由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【题目详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【题目点拨】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.7、C【解题分析】因为数列为等比数列,所以,所以.8、A【解题分析】
先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【题目详解】解:先画出图形,将平移到,为直线与所成的角,设正方体的边长为,,,,,,故选:.【题目点拨】本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.9、B【解题分析】
通过函数图像可计算出三角函数的周期,从而求得w,再代入一个最低点即可得到答案.【题目详解】,,又,,,又,,故选B.【题目点拨】本题主要考查三角函数的图像,通过周期求得w是解决此类问题的关键.10、B【解题分析】
先利用判别式法求出|x|,|y|,|z|的取值范围,再判断得解.【题目详解】因为,所以,整理得:,解得,所以,同理,.故选B【题目点拨】本题主要考查新定义和判别式法求范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、1.98.【解题分析】
本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【题目详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【题目点拨】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.12、【解题分析】
数列为以为首项,1为公差的等差数列。【题目详解】因为所以又所以数列为以为首项,1为公差的等差数列。所以所以故填【题目点拨】本题考查等差数列,属于基础题。13、【解题分析】
由题意可得OQ恰好是角的终边,利用任意角的三角函数的定义,求得Q点的坐标.【题目详解】点P从点出发,沿单位圆顺时针方向运动弧长到达Q点,则OQ恰好是角的终边,故Q点的横坐标,纵坐标为,故答案为:【题目点拨】本题主要考查任意角的三角函数的定义,属于容易题.14、【解题分析】
由垂直关系可得数量积等于零,根据数量积坐标运算构造方程求得结果.【题目详解】,解得:故答案为:【题目点拨】本题考查根据向量垂直关系求解参数值的问题,关键是明确两向量垂直,则向量数量积为零.15、【解题分析】
设出数列的首项和公差,根据等差数列通项公式和前项和公式,代入条件化简得和的关系,再代入所求的式子进行化简求值.【题目详解】解:设等差数列的首项为,公差为,由,得,得,.故答案为:【题目点拨】本题考查了等差数列通项公式和前n项和公式的简单应用,属于基础.16、,【解题分析】
求出函数的值域作为其反函数的定义域,再由求出其反函数的解析式,综合可得出答案.【题目详解】,则,由可得,,因此,函数的反函数是,.故答案为:,.【题目点拨】本题考查反三角函数的求解,解题时注意求出原函数的值域作为其反函数的定义域,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)直接带入求值;(2)将和直接带入函数,会得到和的值,然后根据的值.试题解析:解:(1)(2)考点:三角函数求值18、(1)(2)【解题分析】
(1)两边平方可得,根据同角公式可得,;(2)根据两角和的正切公式,计算可得结果.【题目详解】(1)因为,所以,即.因为,所以,所以,故.(2)因为,所以,所以.【题目点拨】本题考查了两角同角公式,二倍角正弦公式,两角和的正切公式,属于基础题.19、(1)(2)【解题分析】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴20、(1);(2)【解题分析】
(1)利用正弦定理边化角可求得,由的范围可求得结果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面积公式可求得结果.【题目详解】(1)由正弦定理得:,即又(2)由余弦定理得:(当且仅当时取等号),即面积的最大值为【题目点拨】本题考查解三角形的相关知识,涉及到正弦定理边化角的应用、余弦定理解三角形、基本不等式求积的最大值、三角形面积公式的应用;求解面积的最大值的关键是能够在余弦定理的基础上,利用基本不等式来求解两边之积的最大值.21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网医疗平台在线问诊患者健康档案管理报告
- 浙江电商仓库租赁协议书
- 村级道路协管员协议合同
- 移动员工合同续签协议书
- 美业入股协议合同书模板
- 高速公路护坡合同协议书
- 潮州打印机租赁协议合同
- 汝州市餐饮分包协议合同
- 派出所要求监控合同范本
- 物品回收后加工合同范本
- 【正版授权】 IEC 60931-2:2025 EN-FR Shunt power capacitors of the non-self-healing type for AC systems having a rated voltage up to and including 1 000 V - Part 2: Ageing test and destru
- 网络安全运维认证试卷含答案
- 2025年江苏盐城市射阳县城市照明服务有限公司聘考试笔试试题(含答案)
- 2025年团委工作总结-循“荔枝之道”而行走稳青春育人之路
- 消防装备维护保养课件教学
- 设备安全培训
- 2025至2030中国角膜塑形镜行业产业运行态势及投资规划深度研究报告
- 艾梅乙反歧视培训课件
- 小学数学课堂教学实践与创新
- 妇幼保健院(2025-2025年)十五五发展规划
- 健康铅中毒课件
评论
0/150
提交评论