山东省邹平市一中学校2024届高一数学第二学期期末监测试题含解析_第1页
山东省邹平市一中学校2024届高一数学第二学期期末监测试题含解析_第2页
山东省邹平市一中学校2024届高一数学第二学期期末监测试题含解析_第3页
山东省邹平市一中学校2024届高一数学第二学期期末监测试题含解析_第4页
山东省邹平市一中学校2024届高一数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省邹平市一中学校2024届高一数学第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角α的终边上有一点P(sin,cos),则tanα=()A. B. C. D.2.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.3.一个圆柱的底面直径与高都等于球的直径,设圆柱的侧面积为,球的表面积为,则()A. B. C. D.14.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球5.已知,集合,则A. B. C. D.6.已知函数在区间内单调递增,且,若,,,则、、的大小关系为()A. B. C. D.7.已知某圆柱的底面周长为12,高为2,矩形是该圆柱的轴截面,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C.3 D.28.设等比数列的前项和为,若,公比,则的值为()A.15 B.16 C.30 D.319.已知为不同的平面,为不同的直线则下列选项正确的是()A.若,则 B.若,则C.若,则 D.若,则10.一实体店主对某种产品的日销售量(单位:件)进行为期n天的数据统计,得到如下统计图,则下列说法错误的是()A. B.中位数为17C.众数为17 D.日销售量不低于18的频率为0.5二、填空题:本大题共6小题,每小题5分,共30分。11.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.04,出现丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.12.若,则满足的的取值范围为______________;13.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设的三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜公式”为.若,,则用“三斜公式”求得的面积为______.14.已知点,,若向量,则向量______.15.数列满足:,,则______.16.中,三边所对的角分别为,若,则角______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过点,,圆心在直线上,是直线上任意一点.(1)求圆的方程;(2)过点向圆引两条切线,切点分别为,,求四边形的面积的最小值.18.已知数列的前n项和为,,,.(1)求证:数列是等差数列;(2)令,数列的前n项和为,求证:.19.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.20.已知,,,且.(1)若,求的值;(2)设,,若的最大值为,求实数的值.21.设数列满足(,),且,.(1)求和的值;(2)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

由题意利用任意角的三角函数的定义,求得tanα的值.【题目详解】解:∵角α的终边上有一点P(sin,cos),∴x=sin,y=cos,∴则tanα,故选A.【题目点拨】本题主要考查任意角的三角函数的定义,属于基础题.2、A【解题分析】

根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【题目详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【题目点拨】本题考查了统计案例散点图,属于基础题.3、D【解题分析】

由圆柱的侧面积及球的表面积公式求解即可.【题目详解】解:设圆柱的底面半径为,则,则圆柱的侧面积为,球的表面积为,则,故选:D.【题目点拨】本题考查了圆柱的侧面积的求法,重点考查了球的表面积公式,属基础题.4、C【解题分析】

从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.5、D【解题分析】

先求出集合A,由此能求出∁UA.【题目详解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴∁UA={x|x}.故选:D.【题目点拨】本题考查补集的求法,考查补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.6、B【解题分析】

由偶函数的性质可得出函数在区间上为减函数,由对数的性质可得出,由偶函数的性质得出,比较出、、的大小关系,再利用函数在区间上的单调性可得出、、的大小关系.【题目详解】,则函数为偶函数,函数在区间内单调递增,在该函数在区间上为减函数,,由换底公式得,由函数的性质可得,对数函数在上为增函数,则,指数函数为增函数,则,即,,因此,.【题目点拨】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.7、A【解题分析】

由圆柱的侧面展开图是矩形,利用勾股定理求解.【题目详解】圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从到的最短路径为线段,.故选:A.【题目点拨】本题考查圆柱侧面展开图中的最短距离问题,是基础题.8、A【解题分析】

直接利用等比数列前n项和公式求.【题目详解】由题得.故选A【题目点拨】本题主要考查等比数列求和,意在考查学生对该知识的理解掌握水平和分析推理能力.9、C【解题分析】

通过对ABCD逐一判断,利用点线面的位置关系即可得到答案.【题目详解】对于A选项,有可能异面,故错误;对于B选项,可能相交或异面,故错误;对于C选项,,显然故正确;对于D选项,也有可能,故错误.所以答案选C.【题目点拨】本题主要考查直线与平面的位置关系,意在考查学生的空间想象能力,难度不大.10、B【解题分析】

由统计图,可计算出总数、中位数、众数,算得销量不低于18件的天数,即可求得频率.【题目详解】由统计图可知,总数,所以A正确;从统计图可以看出,从小到大排列时,中间两天的销售量的平均值为,所以B错误;从统计图可以看出,销量最高的为17件,所以C正确;从统计图可知,销量不低于18的天数为,所以频率为,所以D正确.综上可知,错误的为B故选:B【题目点拨】本题考查了统计中的总数、中位数、众数和频率的相关概念和性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、0.95【解题分析】

根据抽查一件产品是甲级品、乙级品、丙级品是互为互斥事件,且三个事件对立,再根据抽得正品即为抽得甲级品的概率求解.【题目详解】记事件A={甲级品},B={乙级品},C={丙级品}因为事件A,B,C互为互斥事件,且三个事件对立,所以抽得正品即为抽得甲级品的概率为故答案为:0.95【题目点拨】本题主要考查了互斥事件和对立事件概率的求法,还考查了运算求解的能力,属于基础题.12、【解题分析】

本题首先可确定在区间上所对应的的值,然后可结合正弦函数图像得出不等式的解集.【题目详解】当时,令,解得或,如图,绘出正弦函数图像,结合函数图像可知,当时,的解集为【题目点拨】本题考查三角函数不等式的解法,考查对正弦函数性质的理解,考查计算能力,体现了基础性,是简单题.13、【解题分析】

先由,根据余弦定理,求出,再由,结合余弦定理,求出,再由题意即可得出结果.【题目详解】因为,所以,因此;又,由余弦定理可得,所以,因此.故答案为【题目点拨】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.14、【解题分析】

通过向量的加减运算即可得到答案.【题目详解】,.【题目点拨】本题主要考查向量的基本运算,难度很小.15、【解题分析】

可通过赋值法依次进行推导,找出数列的周期,进而求解【题目详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【题目点拨】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题16、【解题分析】

利用余弦定理化简已知条件,求得的值,进而求得的大小.【题目详解】由得,由于,所以.【题目点拨】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)首先列出圆的标准方程,根据条件代入,得到关于的方程求解;(2)根据切线的对称性,可知,,这样求面积的最小值即是求的最小值,当点是圆心到直线的距离的垂足时,最小.【题目详解】解:(1)设圆的方程为.由题意得解得故圆的方程为.另解:先求线段的中垂线与直线的交点,即解得从而得到圆心坐标为,再求,故圆的方程为.(2)设四边形的面积为,则.因为是圆的切线,所以,所以,即.因为,所以.因为是直线上的任意一点,所以,则,即.故四边形的面积的最小值为.【题目点拨】本题考查了圆的标准方程,和与圆,切线有关的最值的计算,与圆有关的最值计算,需注意数形结合.18、(1)证明见解析;(2)证明见解析.【解题分析】

(1)根据和的关系式,利用,整理化简得到,从而证明是等差数列;(2)利用由(1)写出的通项,利用裂项相消法求出,从而证明【题目详解】(1)因为,所以当时,两式相减,得到,整理得,又因为,所以,所以数列是等差数列,公差为3;(2)当时,,解得或,因为,所以,由(1)可知,即公差,所以,所以,所以【题目点拨】本题考查根据与的关系证明等差数列,裂项相消法求数列的和,属于中档题.19、(1)【解题分析】

(1)利用同角的平方关系求cos(α-β)的值;(2)利用求出,再求的值.【题目详解】(1)因为,所以cos(α-β).(2)因为cosα=,所以,所以,因为β∈(0,),所以.【题目点拨】本题主要考查同角的三角函数的关系求值,考查差角的余弦,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1)0(2)【解题分析】

(1)通过可以算出,移项、两边平方即可算出结果.(2)通过向量的运算,解出,再通过最大值根的分布,求出的值.【题目详解】(1)通过可以算出,即故答案为0.(2),设,,,即的最大值为;①当时,(满足条件);②当时,(舍);③当时,(舍)故答案为【题目点拨】当式子中同时出现时,常常可以利用换元法,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论