2024届山东省临沂市第一中学高一数学第二学期期末复习检测模拟试题含解析_第1页
2024届山东省临沂市第一中学高一数学第二学期期末复习检测模拟试题含解析_第2页
2024届山东省临沂市第一中学高一数学第二学期期末复习检测模拟试题含解析_第3页
2024届山东省临沂市第一中学高一数学第二学期期末复习检测模拟试题含解析_第4页
2024届山东省临沂市第一中学高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省临沂市第一中学高一数学第二学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则,,的大小关系是()A. B. C. D.2.已知向量,且为正实数,若满足,则的最小值为()A. B. C. D.3.三条线段的长分别为5,6,8,则用这三条线段A.能组成直角三角形 B.能组成锐角三角形C.能组成钝角三角形 D.不能组成三角形4.若直线平分圆的周长,则的值为()A.-1 B.1 C.3 D.55.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3 C.6 D.6.已知集合A={x∈N|0≤x≤3},B={x∈R|-2<x<2}则A∩B()A.{0,1} B.{1} C.[0,1] D.[0,2)7.已知两个变量x,y之间具有线性相关关系,试验测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.28.如直线与平行但不重合,则的值为().A.或2 B.2 C. D.9.已知数列的前项和为,且满足,,则()A. B. C. D.10.不等式的解集是()A. B.C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.正方体中,分别是的中点,则所成的角的余弦值是__________.12.在中,角所对的边为,若,且的外接圆半径为,则________.13.若直线平分圆,则的值为________.14.用线性回归某型求得甲、乙、丙3组不同的数据的线性关系数分别为0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一个)组数据的线性关系性最强。15.圆上的点到直线的距离的最小值是______.16.已知函数是定义域为的偶函数.当时,,关于的方程,有且仅有5个不同实数根,则实数的取值范围是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图长方体中,,分别为棱,的中点(1)求证:平面平面;(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).18.在中,已知,,且,求.19.为了了解某市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:,并绘制出频率分布直方图,如图所示.(1)求频率分布直方图中的值,并估计该市高中学生的平均成绩;(2)设、、、四名学生的考试成绩在区间内,、两名学生的考试成绩在区间内,现从这6名学生中任选两人参加座谈会,求学生、至少有一人被选中的概率.20.已知向量,满足:=4,=3,(Ⅰ)求·的值;(Ⅱ)求的值.21.求过点且与圆相切的直线方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

首先确定题中,,的取值范围,再根据大小排序即可.【题目详解】由题知,,,,所以排序得到.故选:D.【题目点拨】本题主要考查了比较指数对数的大小问题,属于基础题.2、A【解题分析】

根据向量的数量积结合基本不等式即可.【题目详解】由题意得,因为,为正实数,则当且仅当时取等.所以选择A【题目点拨】本题主要考查了向量的数量积以及基本不等式,在用基本不等式时要满足一正二定三相等.属于中等题3、C【解题分析】

先求最大角的余弦,再得到三角形是钝角三角形.【题目详解】设最大角为,所以,所以三角形是钝角三角形.故选C【题目点拨】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.4、D【解题分析】

求出圆的圆心坐标,由直线经过圆心代入解得.【题目详解】解:所以的圆心为因为直线平分圆的周长所以直线过圆心,即解得,故选:D.【题目点拨】本题考查直线与圆的位置关系的综合应用,属于基础题.5、C【解题分析】

利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案.【题目详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时等立,的最小值为6,故选:C.【题目点拨】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力.6、A【解题分析】

可解出集合A,然后进行交集的运算即可.【题目详解】A={0,1,2,3},B={x∈R|﹣2<x<2};∴A∩B={0,1}.故选:A.【题目点拨】本题考查交集的运算,是基础题,注意A中x∈N7、C【解题分析】试题分析:设样本中线点为,其中,即样本中心点为,因为回归直线必过样本中心点,将代入四个选项只有B,C成立,画出散点图分析可知两个变量x,y之间正相关,故C正确.考点:回归直线方程8、C【解题分析】

两直线斜率相等,且截距不相等。【题目详解】解析:由题意得,,解得或2,经检验时两直线重合,故.故选C.【题目点拨】本题考查两直线平行,属于基础题.9、B【解题分析】

由可知,数列隔项成等比数列,从而得到结果.【题目详解】由可知:当n≥2时,,两式作商可得:∴奇数项构成以1为首项,2为公比的等比数列,偶数项构成以2为首项,2为公比的等比数列,∴故选:B【题目点拨】本题考查数列的递推关系,考查隔项成等比,考查分析问题解决问题的能力,属于中档题.10、B【解题分析】

由题意,∴,即,解得,∴该不等式的解集是,故选.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【题目详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【题目点拨】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.12、或.【解题分析】

利用正弦定理求出的值,结合角的取值范围得出角的值.【题目详解】由正弦定理可得,所以,,,或,故答案为或.【题目点拨】本题考查正弦定理的应用,在利用正弦值求角时,除了找出锐角还要注意相应的补角是否满足题意,考查计算能力,属于基础题.13、1【解题分析】

把圆的一般式方程化为标准方程得到圆心,根据直线过圆心,把圆心的坐标代入到直线的方程,得到关于的方程,解方程即可【题目详解】圆的标准方程为,则圆心为直线过圆心解得故答案为【题目点拨】本题考查的是直线与圆的位置关系,解题的关键是求出圆心的坐标,属于基础题14、乙【解题分析】由当数据的相关系数的绝对值越趋向于,则相关性越强可知,因为甲、乙、丙组不同的数据的线性相关系数分别为,所以乙线性相关系数的绝对值越接近,所以乙组数据的相关性越强.15、【解题分析】

求圆心到直线的距离,用距离减去半径即可最小值.【题目详解】圆C的圆心为,半径为,圆心C到直线的距离为:,所以最小值为:故答案为:【题目点拨】本题考查圆上的点到直线的距离的最值,若圆心距为d,圆的半径为r且圆与直线相离,则圆上的点到直线距离的最大值为d+r,最小值为d-r.16、.【解题分析】

令,则原方程为,根据原方程有且仅有5个不同实数根,则有5个不同的解,结合图像特征,求出的值或范围,即为方程解的值或范围,转化为范围,即可求解.【题目详解】令,则原方程为,当时,,且为偶函数,做出图像,如下图所示:当时,有一个解;当或,有两个解;当时,有四个解;当或时,无解.,有且仅有5个不同实数根,关于的方程有一个解为,,另一个解为,在区间上,所以,实数的取值范围是.故答案为:.【题目点拨】本题考查复合方程根的个数求参数范围,考查了分段函数的应用,利用换元法结合的函数的奇偶性的对称性,利用数形结合是解题的关键,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2);画图见解析【解题分析】

(1)推导出平面,得出,得出,从而得到,进而证出平面,由此证得平面平面.(2)根据通过辅助线推出线面平行再推出线线平行,再根据“一条和平面不平行的直线与平面的公共点即为直线与平面的交点”得到点位置,然后计算的值.【题目详解】(1)证明:在长方体中,,分别为棱,的中点,所以平面,则,在中,,在中,,所以,因为在中,,所以,所以,又因为,所以平面,因为平面,所以平面平面(2)如图所示:设,连接,取中点记为,过作,且,则.证明:因为为中点,所以且;又因为,且,所以且,所以四边形为平行四边形,则;又因为,所以,且平面,所以平面;又因为,则,平面,即点为直线与平面的交点;因为,所以,则;且有上述证明可知:四边形为平行四边形,所以,所以,因为,.【题目点拨】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.18、或【解题分析】

首先根据三角形面积公式求出角B的正弦值,然后利用平方关系,求出余弦值,再依据余弦定理即可求出.【题目详解】由得,,所以或,由余弦定理有,,故或,即或.【题目点拨】本题主要考三角形面积公式、同角三角函数基本关系的应用,以及利用余弦定理解三角形.19、(1);(2).【解题分析】

(1)由频率分布直方图能求出a.由此能估计该市高中学生的平均成绩;(2)现从这6名学生中任选两人参加座谈会,求出基本事件总数,再学生M、N至少有一人被选中包含的基本事件个数,由此能求出学生M、N至少有一人被选中的概率.【题目详解】(1)由频率分布直方图得:,∴估计该市高中学生的平均成绩为:.(2)设A、B、C、D四名学生的考试成绩在区间[80,90)内,M、N两名学生的考试成绩在区间[60,70)内,现从这6名学生中任选两人参加座谈会,基本事件总数,学生M、N至少有一人被选中包含的基本事件个数,∴学生M、N至少有一人被选中的概率.【题目点拨】本题考查了利用频率分布直方图求平均数,考查了古典概型计算公式,考查了数学运算能力.20、(Ⅰ)=2(Ⅱ)【解题分析】

(I)计算,结合两向量的模可得;(II)利用,把求模转化为向量的数量积运算.【题目详解】解:(Ⅰ)由题意得即又因为所以解得=2.(Ⅱ)因为,所以=16+36-4×2=44.又因为所以.【题目点拨】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论