湖北省鄂州市部分高中联考协作体2024届高二数学第二学期期末监测试题含解析_第1页
湖北省鄂州市部分高中联考协作体2024届高二数学第二学期期末监测试题含解析_第2页
湖北省鄂州市部分高中联考协作体2024届高二数学第二学期期末监测试题含解析_第3页
湖北省鄂州市部分高中联考协作体2024届高二数学第二学期期末监测试题含解析_第4页
湖北省鄂州市部分高中联考协作体2024届高二数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省鄂州市部分高中联考协作体2024届高二数学第二学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.口袋中装有5个形状和大小完全相同的小球,编号分别为1,2,3,4,5,从中任意取出3个小球,以表示取出球的最大号码,则()A. B. C. D.2.下列命题中,正确的命题是()A.若,则B.若,则不成立C.,则或D.,则且3.设函数,则()A.9 B.11 C.13 D.154.在一次投篮训练中,某队员连续投篮两次.设命题是“第一次投中”,是“第二次投中”,则命题“两次都没有投中目标”可表示为A. B. C. D.5.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球半径相等的圆柱,与半球(如图一)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥(如图二),用任何一个平行与底面的平面去截它们时,可证得所截得的两个截面面积相等,由此证明该几何体与半球体积相等.现将椭圆绕轴旋转一周后得一橄榄状的几何体(如图三),类比上述方法,运用祖暅原理可求得其体积等于()A. B. C. D.6.函数f(x)=3A. B. C. D.7.六位同学排成一排,其中甲和乙两位同学相邻的排法有()A.60种 B.120种 C.240种 D.480种8.小明同学在做市场调查时得到如下样本数据13610842他由此得到回归直线的方程为,则下列说法正确的是()①变量与线性负相关②当时可以估计③④变量与之间是函数关系A.① B.①② C.①②③ D.①②③④9.在圆中,弦的长为4,则()A.8 B.-8 C.4 D.-410.“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.已知函数是定义在上的奇函数,且以2为周期,当时,,则的值为()A. B. C. D.12.已知,,复数,则()A. B.1 C.0 D.2二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,原点在圆:内,过点的直线与圆交于点,.若面积的最大值小于2,则实数的取值范围是__________.14.在中,,,,则的面积等于__________.15.在△ABC中,角A,B,C所对的边分别为a,b,c,且16.若随机变量,且,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,曲线在点处的切线平分圆C:的周长.(1)求a的值;(2)讨论函数的图象与直线的交点个数.18.(12分)已知复数与都是纯虚数,复数,其中i是虚数单位.(1)求复数;(2)若复数z满足,求z.19.(12分)在四棱锥中,,是的中点,面面(1)证明:面;(2)若,求二面角的余弦值.20.(12分)如图,在正三棱锥中,侧棱长和底边长均为,点为底面中心.(1)求正三棱锥的体积;(2)求证:.21.(12分)已知函数.(Ⅰ)当时,求函数在处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)求证:当时,函数的图像与函数的图像在区间上没有交点.22.(10分)已知椭圆左右焦点分别为,,若椭圆上的点到,的距离之和为,求椭圆的方程和焦点的坐标;若、是关于对称的两点,是上任意一点,直线,的斜率都存在,记为,,求证:与之积为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

首先计算各个情况概率,利用数学期望公式得到答案.【题目详解】故.故本题正确答案为A.【题目点拨】本题考查了概率的计算和数学期望的计算,意在考查学生的计算能力.2、C【解题分析】

A.根据复数虚部相同,实部不同时,举例可判断结论是否正确;B.根据实数的共轭复数还是其本身判断是否成立;C.根据复数乘法的运算法则可知是否正确;D.考虑特殊情况:,由此判断是否正确.【题目详解】A.当时,,此时无法比较大小,故错误;B.当时,,所以,所以此时成立,故错误;C.根据复数乘法的运算法则可知:或,故正确;D.当时,,此时且,故错误.故选:C.【题目点拨】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若,则有.3、B【解题分析】

根据自变量所在的范围代入相应的解析式计算即可得到答案.【题目详解】∵函数,∴=2+9=1.故选B.【题目点拨】本题考查函数值的求法,考查指对函数的运算性质,是基础题.4、D【解题分析】分析:结合课本知识点命题的否定和“且”联结的命题表示来解答详解:命题是“第一次投中”,则命题是“第一次没投中”同理可得命题是“第二次没投中”则命题“两次都没有投中目标”可表示为故选点睛:本题主要考查了,以及的概念,并理解为真时,,中至少有一个为真。5、C【解题分析】

根据椭圆方程,构造一个底面半径为2,高为3的圆柱,通过计算可知高相等时截面面积相等,因而由祖暅原理可得橄榄球几何体的体积的一半等于圆柱的体积减去圆锥的体积.【题目详解】由椭圆方程,构造一个底面半径为2,高为3的圆柱在圆柱中挖去一个以圆柱下底面圆心为顶点、上底面为底面的圆锥当截面与底面距离为时,截圆锥得到的截面小圆半径为则,即所以截面面积为把代入椭圆方程,可求得所以橄榄球形状几何体的截面面积为由祖暅原理可得橄榄球几何体的体积为故选:C【题目点拨】本题考查了类比推理的综合应用,空间几何体体积的求法,属于中档题.6、B【解题分析】

取特殊值排除得到答案.【题目详解】f(x)=3x故答案选B【题目点拨】本题考查了函数图像的判断,特殊值可以简化运算.7、C【解题分析】分析:直接利用捆绑法求解.详解:把甲和乙捆绑在一起,有种方法,再把六个同学看成5个整体进行排列,有种方法,由乘法分步原理得甲和乙两位同学相邻的排法有种.故答案为:C.点睛:(1)本题主要考查排列组合的应用,意在考查学生对该知识的掌握水平和分析推理能力.(2)遇到相邻问题,常用捆绑法,先把相邻元素捆绑在一起,再进行排列.8、C【解题分析】

根据数据和回归方程对每一个选项逐一判断得到答案.【题目详解】①变量与线性负相关,正确②将代入回归方程,得到,正确③将代入回归方程,解得,正确④变量与之间是相关关系,不是函数关系,错误答案为C【题目点拨】本题考查了回归方程的相关知识,其中中心点一定在回归方程上是同学容易遗忘的知识点.9、A【解题分析】分析:根据平面向量的数量积的定义,老鹰圆的垂径定理,即可求得答案.详解:如图所示,在圆中,过点作于,则为的中点,在中,,可得,所以,故选A.点睛:本题主要考查了平面向量的数量积的运算,其中解答中涉及到圆的性质,直角三角形中三角函数的定义和向量的数量积的公式等知识点的综合运用,着重考查了分析问题和解答问题的能力.10、A【解题分析】

利用充分条件和必要条件的定义进行判断【题目详解】解:当时,,所以,当时,,所以,即所以“”是“”的充分不必要条件故选:A【题目点拨】此题考查充分条件,必要条件的应用,属于基础题11、A【解题分析】

根据题意可得:,代入中计算即可得到答案。【题目详解】由于;因为函数是定义在上的奇函数,且以2为周期;所以又因为,所以;故答案选A【题目点拨】本题主要考查函数的有关性质,奇偶性、周期性,以及对数的有关运算,属于基础题。12、B【解题分析】分析:先将等式右边化简,然后根据复数相等的条件即可.详解:故选B.点睛:考查复数的除法运算和复数相等的条件,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:先根据三角形面积公式确定∠ACB范围,再根据垂径定理圆心到直线距离范围,最后结合O在圆内求实数的取值范围详解:因为面积的最大值小于2,,所以,所以圆心C到直线距离因此点睛:涉及圆中弦长问题,一般利用垂径定理进行解决,具体就是利用半径的平方等于圆心到直线距离平方与弦长一半平方的和;直线与圆位置关系,一般利用圆心到直线距离与半径大小关系进行判断.14、【解题分析】

通过余弦定理求出AB的长,然后利用三角形的面积公式求解即可.【题目详解】设AB=c,在△ABC中,由余弦定理知AC2=AB2+BC2﹣2AB•BCcosB,即7=c2+4﹣2×2×c×cos60°,c2﹣2c﹣1=0,又c>0,∴c=1.S△ABC=AB•BCsinB=BC•h,可知S△ABC=×1×2×=.故答案为:.【题目点拨】本题考查三角形的面积求法,余弦定理的应用,考查计算能力,属于中档题.15、π【解题分析】依题意,由正弦定理得sinAcosB-sinBcosA=1216、【解题分析】

由,得,两个式子相加,根据正态分布的对称性和概率和为1即可得到答案.【题目详解】由随机变量,且,根据正态分布的对称性得且正态分布的概率和为1,得.故答案为0.15【题目点拨】本题考查了正态分布曲线的特点及曲线所表示的意义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解题分析】

(1)求得曲线在点处的切线,根据题意可知圆C的圆心在此切线上,可得a的值.(2)根据得出极值,结合单调区间和函数图像,分类讨论的值和交点个数。【题目详解】(1),∴,,所以曲线在点处的切线方程为由切线平分圆C:的周长可知圆心在切线上,∴,∴(2)由(1)知,,令,解得或当或时,,故在,上为增函数;当时,,故在上为减函数.由此可知,在处取得极大值在处取得极小值大致图像如图:当或时,的图象与直线有一个交点当或时,的图象与直线有两个交点当时,的图象与直线有3个交点.【题目点拨】本题考查利用导数求切线,研究单调区间,考查数形结合思想求解交点个数问题,属于基础题.18、(1);(2).【解题分析】

(1)利用纯虚数的定义设出并表示即可求解.(2)代入和,利用复数的四则运算求解即可.【题目详解】(1)设,则由题意得.∴∴(2)∵∴【题目点拨】本题考查复数的代数四则运算,纯虚数的概念等知识,是基础题19、(1)详见解析;(2).【解题分析】试题分析:(Ⅰ)取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形.得到DE∥AF,再由线面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得AB⊥AC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.试题解析:(Ⅰ)证明:取PB的中点F,连接AF,EF.∵EF是△PBC的中位线,∴EF∥BC,且EF=.又AD=BC,且AD=,∴AD∥EF且AD=EF,则四边形ADEF是平行四边形.∴DE∥AF,又DE⊄面ABP,AF⊂面ABP,∴ED∥面PAB(Ⅱ)法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上.∴AB⊥AC,可得.过D作DG⊥AC于G,∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴DG⊥平面PAC,则DG⊥PC.过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,∴∠GHD是二面角A﹣PC﹣D的平面角.在△ADC中,,连接AE,.在Rt△GDH中,,∴,即二面角A﹣PC﹣D的余弦值法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上,∴AB⊥AC.∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.如图以A为原点,方向分别为x轴正方向,y轴正方向建立空间直角坐标系.可得,.设P(x,0,z),(z>0),依题意有,,解得.则,,.设面PDC的一个法向量为,由,取x0=1,得.为面PAC的一个法向量,且,设二面角A﹣PC﹣D的大小为θ,则有,即二面角A﹣PC﹣D的余弦值.20、(1);(2)证明见解析.【解题分析】

(1)连接,根据题意得到底面,,求出,再由三棱锥的体积公式,即可求出结果;(2)取的中点为,连接,,得到,,根据线面垂直的判定定理,得到平面,进而可得出结果.【题目详解】(1)连接,因为在正三棱锥中,侧棱长和底边长均为,点为底面中心,所以底面,,因此;所以正三棱锥的体积;(2)取的中点为,连接,,因为在正三棱锥中,侧棱长和底边长均为,所以,,又,平面,平面,所以平面;又平面,因此.【题目点拨】本题主要考查求三棱锥的体积,以及证明线线垂直,熟记棱锥的体积公式,以及线面垂直的判定定理与性质定理即可,属于常考题型.21、(Ⅰ);(Ⅱ)见解析;(Ⅲ)见解析.【解题分析】

(Ⅰ)当时,求得函数的导数,得到切线的斜率,利用直线的点斜式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论