版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省项城三高数学高二第二学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知A={|},B={|},则A∪B=A.{|或} B.{|} C.{|} D.{|}2.设函数,若,则正数的取值范围为()A. B. C. D.3.从10名男生6名女生中任选3人参加竞赛,要求参赛的3人中既有男生又有女生,则不同的选法有()种A.1190 B.420 C.560 D.33604.已知函数的最小正周期为4π,则(
)A.函数f(x)的图象关于原点对称 B.函数f(x)的图象关于直线对称C.函数f(x)图象上的所有点向右平移个单位长度后,所得的图象关于原点对称 D.函数f(x)在区间(0,π)上单调递增5.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变6.设,均为实数,且,,,则()A. B. C. D.7.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.与复数相等的复数是()A. B. C. D.9.给出下列三个命题:①“若,则”为假命题;②若为假命题,则均为假命题;③命题,则,其中正确的个数是()A.0 B.1 C.2 D.310.下面几种推理过程是演绎推理的是()A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B.由三角形的性质,推测空间四面体的性质C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D.在数列中,,可得,由此归纳出的通项公式11.“大衍数列”来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.大衍数列前10项依次是0,2,4,8,12,18,24,32,40,50,…,则此数列第20项为()A.180 B.200 C.128 D.16212.设随机变量服从正态分布,若,则()A. B. C. D.与的值有关二、填空题:本题共4小题,每小题5分,共20分。13.《左传.僖公十四年》有记载:“皮之不存,毛将焉附?"”这句话的意思是说皮都没有了,毛往哪里依附呢?比喻事物失去了借以生存的基础,就不能存在.皮之不存,毛将焉附?则“有毛”是“有皮”的__________条件(将正确的序号填入空格处).①充分条件②必要条件③充要条件④既不充分也不必要条件14.若存在两个正实数x,y使等式mx(lny﹣lnx)﹣y=0成立,则实数m的取值范围是_____15.已知函数,若有且仅有一个整数,使,则实数的取值范围是__________.16.已知等差数列的前项和为,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为菱形,,又底面,,为的中点.(1)求证:;(2)求平面与平面所成锐二面角的余弦值.18.(12分)已知:(n∈N)的展开式中第五项的系数与第三项的系数的比是10:1.(1)求展开式中各项系数的和;(2)求展开式中含的项.19.(12分)已知函数,.(Ⅰ)当时,证明:;(Ⅱ)的图象与的图象是否存在公切线(公切线:同时与两条曲线相切的直线)?如果存在,有几条公切线,请证明你的结论.20.(12分)若,且.(Ⅰ)求实数的值;(Ⅱ)求的值.21.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值以及此时的直角坐标.22.(10分)设,函数,是函数的导函数,是自然对数的底数.(1)当时,求导函数的最小值;(2)若不等式对任意恒成立,求实数的最大值;(3)若函数存在极大值与极小值,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据二次不等式的解法得到B={|}=,再根据集合的并集运算得到结果.【题目详解】B={|}=,A={|},则A∪B={|}.故答案为:D.【题目点拨】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.2、C【解题分析】分析:先求出最大值,再求出的最大值,从而化恒成立问题为最值问题.详解:令,,令,解得,在、单调递增,在单调递减,又,又,当时,令,解得,在上单调递增,在上单调递减.;当时,无最大值,即不符合;故有,解得,故.故选:C.点睛:本题考查了函数的性质的判断与应用,同时考查了恒成立问题与最值问题的应用.3、B【解题分析】
根据分类计数原理和组合的应用即可得解.【题目详解】要求参赛的3人中既有男生又有女生,分为两种情况:第一种情况:1名男生2名女生,有种选法;第二种情况:2名男生1名女生,有种选法,由分类计算原理可得.故选B.【题目点拨】本题考查分类计数原理和组合的应用,属于基础题.4、C【解题分析】分析:函数的最小正周期为4π,求出,可得的解析式,对各选项进行判断即可.详解:函数的最小正周期为4π,,,,由对称中心横坐标方程:,可得,A不正确;由对称轴方程:,可得,B不正确;函数f(x)图象上的所有点向右平移个单位,可得:,图象关于原点对称,C正确;令,可得:,函数f(x)在区间(0,π)上不是单调递增,D不正确;故选C.点睛:本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,注意图象变换时的伸缩、平移总是针对自变量x而言,而不是看角ωx+φ的变化.5、D【解题分析】
由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【题目详解】由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【题目点拨】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题6、B【解题分析】分析:将题目中方程的根转化为两个函数图像的交点的横坐标的值,作出函数图像,根据图像可得出的大小关系.详解:在同一平面直角坐标系中,分别作出函数的图像由图可知,故选B.点睛:解决本题,要注意①方程有实数根②函数图像与轴有交点③函数有零点三者之间的等价关系,解决此类问题时,有时候采用“数形结合”的策略往往能起到意想不到的效果.7、D【解题分析】因为把的图象向右平移个单位长度可得到函数的图象,所以,为了得到函数的图象,可以将函数的图象,向右平移个单位长度故选D.8、C【解题分析】
根据复数运算,化简复数,即可求得结果.【题目详解】因为.故选:C.【题目点拨】本题考查复数的运算,属基础题.9、B【解题分析】试题分析:“若,则”的逆否命题为“若,则”,为真命题;若为假命题,则至少有一为假命题;命题,则,所以正确的个数是1,选B.考点:命题真假【名师点睛】若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”——一真即真,“且”——一假即假,“非”——真假相反,做出判断即可.以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p∨q”“p∧q”“非p”形式命题的真假,列出含有参数的不等式(组)求解即可.10、C【解题分析】
推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),其中合情推理包含类比推理与归纳推理,利用各概念进行判断可得正确答案.【题目详解】解:∵A中是从特殊→一般的推理,均属于归纳推理,是合情推理;B中,由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;C为三段论,是从一般→特殊的推理,是演绎推理;D为不完全归纳推理,属于合情推理.故选:C.【题目点拨】本题考查推理中的合情推理与演绎推理,注意理解其概念作出正确判断.11、B【解题分析】根据前10项可得规律:每两个数增加相同的数,且增加的数构成首项为2,公差为2的等差数列。可得从第11项到20项为60,72,84,98,112,128,144,162,180,200.所以此数列第20项为200.故选B。【题目点拨】从前10个数观察增长的规律。12、A【解题分析】分析:根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得,从而求出即可.详解:随机变量服从正态分布,正态曲线的对称轴是,,而与关于对称,由正态曲线的对称性得:,故.故选:A.点睛:解决正态分布问题有三个关键点:(1)对称轴x=μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x=0.二、填空题:本题共4小题,每小题5分,共20分。13、①【解题分析】分析:根据充分条件和必要条件的定义进行判断即可.详解:由题意知“无皮”⇒“无毛”,所以“有毛”⇒“有皮”即“有毛”是“有皮”的充分条件.故答案为:①.点睛:本题主要考查充分条件和必要条件的判断,利用充分条件和必要条件的定义是解决本题的关键.14、【解题分析】
将原方程转化为,令换元后构造函数,利用导数研究的单调性,由此求得的值域,进而求得的取值范围.【题目详解】两边同时除以可得,令题意即为存在使得成立,显然时等式不成立,故当时,存在使得成立。记由得在上为减函数,在为减函数,在为增函数;且,从而,故.【题目点拨】本小题主要考查利用导数研究函数的单调性、值域,考查化归与转化的数学思想方法,属于中档题.15、【解题分析】因,故由题设问题转化为“有且仅有一个整数使得或”。因为,所以当时,,函数单调递增;当时,,函数单调递减,即函数在处取最大值,由于,因此由题设可知,解之得,应填答案。点睛:解答本题的关键是准确理解题设中条件“有且仅有一个整数,使”。求解时先将问题进行等价转化为“有且仅有一个整数使得或”。进而将问题转化为断定函数图像的形状问题,然后先对函数进行求导,依据导数与函数的单调性之间的关系推断出该函数在在处取最大值,从而借助题设条件得到不等式组,通过解不等式组使得问题获解。16、【解题分析】
根据等差数列的性质得到,再计算得到答案.【题目详解】已知等差数列故答案为【题目点拨】本题考查了等差数列的性质,前N项和,利用性质可以简化运算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2).【解题分析】分析:(1)根据菱形的性质以及线面垂直的性质可推导出,,从而得到,由此证明平面,从而得到;(2)分别以、、为,,轴,建立空间直角坐标系,利用向量垂直数量积为零列方程求出求出平面与平面的向量法,利用空间向量夹角余弦公式可得结果.详解:(Ⅰ)证明:因为底面为菱形,,且为的中点,所以.又,所以.又底面,所以.于是平面,进而可得.(Ⅱ)解:分别以、、为,,轴,设,则,,,.显然,平面的法向量为,设平面的法向量为,则由解得.所以故平面与平面所成锐二面角的余弦值为.点睛:本题主要考查利用空间向量求二面角,属于中档题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1)1,(2)【解题分析】由题意知,第五项系数为,第三项的系数,则有,解.(1)令得各项系数的和为.(2)通项公式,令,则,故展开式中含的项为.19、(Ⅰ)见解析(Ⅱ)曲线y=f(x),y=g(x)公切线的条数是2条,证明见解析【解题分析】
(Ⅰ)当x>0时,设h(x)=g(x)﹣x=lnx﹣x,设l(x)=f(x)﹣x=ex﹣x,分别求得导数和单调性、最值,即可得证;(Ⅱ)先确定曲线y=f(x),y=g(x)公切线的条数,设出切点坐标并求出两个函数导数,根据导数的几何意义列出方程组,先化简方程得lnm﹣1.分别作出y=lnx﹣1和y的函数图象,通过图象的交点个数来判断方程的解的个数,即可得到所求结论.【题目详解】(Ⅰ)当x>0时,设h(x)=g(x)﹣x=lnx﹣x,h′(x)1,当x>1时,h′(x)<0,h(x)递减;0<x<1时,h′(x)>0,h(x)递增;可得h(x)在x=1处取得最大值﹣1,可得h(x)≤﹣1<0;设l(x)=f(x)﹣x=ex﹣x,l′(x)=ex﹣1,当x>0时,l′(x)>0,l(x)递增;可得l(x)>l(0)=1>0,综上可得当x>0时,g(x)<x<f(x);(Ⅱ)曲线y=f(x),y=g(x)公切线的条数是2,证明如下:设公切线与g(x)=lnx,f(x)=ex的切点分别为(m,lnm),(n,en),m≠n,∵g′(x),f′(x)=ex,可得,化简得(m﹣1)lnm=m+1,当m=1时,(m﹣1)lnm=m+1不成立;当m≠1时,(m﹣1)lnm=m+1化为lnm,由lnx1,即lnx﹣1.分别作出y=lnx﹣1和y的函数图象,由图象可知:y=lnx﹣1和y的函数图象有两个交点,可得方程lnm有两个实根,则曲线y=f(x),y=g(x)公切线的条数是2条.【题目点拨】本题考查导数的运用:求切线的斜率和单调性、极值和最值,考查方程与构造函数法和数形结合思想,考查化简运算能力,属于较难题.20、(Ⅰ);(Ⅱ)2【解题分析】
(Ⅰ)解法1:将展开,找出项的系数表达式,结合条件列方程求出的值;解法2:利用二项式定理写出的通项,令的指数为,列方程求出参数的值,再将参数代入通项得出的系数的表达式,结合条件列方程求出实数的值;(Ⅱ)解法1:令代入题干等式求出的值,再令可得出的值,减去可得出,再乘以可得出答案;解法2:利用二项式定理求出、、、、、、的值,代入代数式可得出答案。【题目详解】(Ⅰ)解法1:因为,所以,解法2:,,所以。(Ⅱ)解法1:当时,,当时,,,;解法2:由二项展开式分别算出,代入得:。【题目点拨】本题考查二项式定理的应用,考查二项式指定项的系数问题,考查项的系数和问题,一般利用赋值法来求解,考查计算能力,属于中等题。21、(1):,:;(2),此时.【解题分析】试题分析:(1)的普通方程为,的直角坐标方程为;(2)由题意,可设点的直角坐标为到的距离当且仅当时,取得最小值,最小值为,此时的直角坐标为.试题解析:(1)的普通方程为,的直角坐标方程为.(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离的最小值,.当且仅当时,取得最小值,最小值为,此时的直角坐标为.考点:坐标系与参数方程.【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年陕西省咸阳市礼泉县辅警招聘考试题库附答案解析
- 2025年浙江省嘉兴市南湖区辅警招聘考试题库附答案解析
- 2025年石家庄市元氏县保安员招聘考试题库附答案解析
- 2025年山南地区扎囊县保安员招聘考试题库附答案解析
- 2025年太原市尖草坪区辅警招聘考试题库附答案解析
- 丽江事业单位笔试真题2024
- 2025年车辆租赁月付协议
- 东海县事业单位考试真题2024
- 2025年注册会计师考试审计真题汇编
- 北京市第四中学2024-2025学年高一上学期语文期中考试试卷(含答案)
- 《结直肠癌诊治》课件
- DB33T 2129-2018 建筑消防设施检测评定技术规程
- iso28000-2022供应链安全管理手册程序文件表单一整套
- 《计算机信息系统安全》期末考试复习题库(含答案)
- 国家电网考试历年真题汇编及解析(204题)
- 毕业论文写作课件
- 急救车调度与重症患者管理制度
- 2023年深圳市龙华区招聘社区网格员考试试题及答案
- 英国介绍课件改
- 新版高中物理必做实验目录及器材-(电子版)
- CJ/T 123-2016 给水用钢骨架聚乙烯塑料复合管
评论
0/150
提交评论