2024届山东省单县一中高二数学第二学期期末调研试题含解析_第1页
2024届山东省单县一中高二数学第二学期期末调研试题含解析_第2页
2024届山东省单县一中高二数学第二学期期末调研试题含解析_第3页
2024届山东省单县一中高二数学第二学期期末调研试题含解析_第4页
2024届山东省单县一中高二数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省单县一中高二数学第二学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于函数有下述四个结论:①f(x)是偶函数②f(x)在区间(,)单调递增③f(x)在有4个零点④f(x)的最大值为2其中所有正确结论的编号是A.①②④ B.②④ C.①④ D.①③2.下列结论错误的是()A.命题“若p,则q”与命题“若¬q,则¬p”互为逆否命题B.命题p:,,命题q:,,则“”为真C.“若,则”的逆命题为真命题D.命题P:“,使得”的否定为¬P:“,3.函数=的部分图像如图所示,则的单调递减区间为()A. B.C. D.4.一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为()A.4 B.8 C.16 D.245.若复数满足,则的虚部为A. B. C.1 D.6.已知在处有极值0,且函数在区间上存在最大值,则的最大值为()A.-6 B.-9 C.-11 D.-47.设三次函数的导函数为,函数的图象的一部分如图所示,则正确的是()A.的极大值为,极小值为B.的极大值为,极小值为C.的极大值为,极小值为D.的极大值为,极小值为8.等差数列{an}的公差是2,若a2,a4A.n(n+1) B.n(n-1) C.n(n+1)2 D.9.若动点与两定点,的连线的斜率之积为常数,则点的轨迹一定不可能是()A.除两点外的圆 B.除两点外的椭圆C.除两点外的双曲线 D.除两点外的抛物线10.已知定义在R上的函数满足:对任意x∈R,都有成立,且当时,(其中为的导数).设,则a,b,c三者的大小关系是()A. B. C. D.11.已知函数满足,当时,,若在区间上方程有两个不同的实根,则实数的取值范围是()A. B. C. D.12.设为等差数列的前项和,若,,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,若是的必要不充分条件,则实数的取值范围为______.14.从1、3、5、7中任取2个数字,从0、2、4、6中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有________个.(用数字作答)15.已知抛物线的弦的中点的横坐标为2,则的最大值为__________.16.若的二项展开式中的第3项的二项式系数为15,则的展开式中含项的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:在中,,,分别是角,,所对的边长,是和的等差中项.(Ⅰ)求角;(Ⅱ)若的面积,且,求的周长.18.(12分)如图,直三棱柱中,为等腰直角三角形,,且.分别为的中点.(1)求证:;(2)求二面角的余弦值.19.(12分)如图,在以为顶点的多面体中,平面,,.(1)请在图中作出平面,使得且,并说明理由;(2)证明:.20.(12分)已知.(1)讨论的单调性;(2)若,且在区间上的最小值为,求的值.21.(12分)已知曲线y=x3+x-2在点P0处的切线平行于直线4x-y-1=0,且点P0在第三象限,⑴求P0的坐标;⑵若直线,且l也过切点P0,求直线l的方程.22.(10分)在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若,圆与直线交于两点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

化简函数,研究它的性质从而得出正确答案.【题目详解】为偶函数,故①正确.当时,,它在区间单调递减,故②错误.当时,,它有两个零点:;当时,,它有一个零点:,故在有个零点:,故③错误.当时,;当时,,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C.【题目点拨】画出函数的图象,由图象可得①④正确,故选C.2、C【解题分析】

由逆否命题的定义即可判断A;由指数函数的单调性和二次函数的值域求法,可判断B;由命题的逆命题,可得m=0不成立,可判断C;运用命题的否定形式可判断D.【题目详解】解:命题“若p则q”与命题“若¬q则¬p”互为逆否命题,故A正确;命题,,由,可得p真;命题,,由于,则q假,则“”为真,故B正确;“若,则”的逆命题为“若,则”错误,如果,不成立,故C不正确;命题P:“,使得”的否定为¬P:“,”,故D正确.故选:C.【题目点拨】本题考查四种命题和命题的否定,考查判断能力和运算能力,属于基础题.3、D【解题分析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.考点:三角函数图像与性质4、B【解题分析】

根据三视图知,三棱锥的一条长为6的侧棱与底面垂直,底面是直角边为2、4的直角三角形,利用棱锥的体积公式计算即可.【题目详解】由三视图知三棱锥的侧棱与底垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,4,,棱锥的体积,故选B.【题目点拨】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5、A【解题分析】,虚部为.【考点】复数的运算与复数的定义.6、C【解题分析】

利用函数在处有极值0,即则,解得,再利用函数的导数判断单调性,在区间上存在最大值可得,从而可得的最大值.【题目详解】由函数,则,因为在,处有极值0,则,即,解得或,当时,,此时,所以函数单调递增无极值,与题意矛盾,舍去;当时,,此时,,则是函数的极值点,符合题意,所以;又因为函数在区间上存在最大值,因为,易得函数在和上单调递增,在上单调递减,则极大值为,且,所以,解得,则的最大值为:.故选C.【题目点拨】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性以及函数单调性,求解参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.7、C【解题分析】

由的图象可以得出在各区间的正负,然后可得在各区间的单调性,进而可得极值.【题目详解】由图象可知:当和时,,则;当时,,则;当时,,则;当时,,则;当时,,则.所以在上单调递减;在上单调递增;在上单调递减.所以的极小值为,极大值为.故选C.【题目点拨】本题考查导数与函数单调性的关系,解题的突破点是由已知函数的图象得出的正负性.8、A【解题分析】试题分析:由已知得,a42=a2⋅a8,又因为{an}【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n项和.9、D【解题分析】

根据题意可分别表示出动点与两定点的连线的斜率,根据其之积为常数,求得和的关系式,对的范围进行分类讨论,分别讨论且和时,可推断出点的轨迹.【题目详解】因为动点与两定点,的连线的斜率之积为常数,所以,整理得,当时,方程的轨迹为双曲线;当时,且方程的轨迹为椭圆;当时,点的轨迹为圆,抛物线的标准方程中,或的指数必有一个是1,故点的轨迹一定不可能是抛物线,故选D.【题目点拨】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题就是利用方法①求动点的轨迹方程的.10、B【解题分析】试题分析:由题意得:对任意x∈R,都有,即f(x)=f(2-x)成立,所以函数的对称轴为x=1,所以f(3)=f(-1).因为当x∈(-∞,1)时,(x-1)f′(x)<0,所以f′(x)>0,所以函数f(x)在(-∞,1)上单调递增.因为-1<0<,所以f(-1)<f(0)<f(),即f(3)<f(0)<f(),所以c<a<b.故选B.考点:本题主要考查熟练函数的奇偶性、单调性、对称性等,利用导数研究函数的单调性。点评:中档题,熟练掌握函数的性质如奇偶性、单调性、周期性、对称性等,在给定区间,导数值非负,函数是增函数,导数值为非正,函数为减函数。自左向右看,函数图象上升,函数增;函数图象下降,函数减。11、D【解题分析】分析:首先根据题意,求得函数在相应的区间上的解析式,之后在同一个坐标系内画出函数的图像,之后将函数的零点问题转化为对应曲线交点的个数问题,结合图形,得到结果.详解:当时,,,在同一坐标系内画出的图像,动直线过定点,当再过时,斜率,由图象可知当时,两图象有两个不同的交点,从而有两个不同的零点,故选D.点睛:该题考查的是有关函数零点个数的问题,在解题的过程中,需要先确定函数的解析式,之后在同一个坐标系内画出相应的曲线,将函数的零点个数转化为曲线的交点个数来解决,非常直观,在做题的时候,需要把握动直线中的定因素.12、B【解题分析】分析:首先设出等差数列的公差为,利用等差数列的求和公式,得到公差所满足的等量关系式,从而求得结果,之后应用等差数列的通项公式求得,从而求得正确结果.详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】分析:首先求得p和q,然后结合是的必要不充分条件求解实数a的取值范围即可.详解:求解二次不等式可得:,求解二次不等式可得:,是的必要不充分条件,则:,即:,求解不等式组可得:实数的取值范围为.点睛:本题主要考查充分性、必要性条件的应用,集合思想的应用等知识,意在考查学生的转化能力和计算求解能力.14、1【解题分析】

题目要求得到能被5整除的数字,注意0和5的排列,分三种情况进行讨论,四位数中包含5和0的情况,四位数中包含5,不含0的情况,四位数中包含0,不含5的情况,根据分步计数原理得到结果.【题目详解】解:①四位数中包含5和0的情况:.②四位数中包含5,不含0的情况:.③四位数中包含0,不含5的情况:.四位数总数为.故答案为:1.【题目点拨】本题是一个典型的排列问题,数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏,属于中档题.15、1【解题分析】利用抛物线的定义可知,设A(x1,y1),B(x2,y2),x1+x2=4,那么|AF|+|BF|=x1+x2+2,由图可知|AF|+|BF|≥|AB|⇒|AB|≤1,当AB过焦点F时取最大值为1.16、160【解题分析】分析:根据题意,结合二项式定理可得,再利用二项式通项公式即可.详解:由二项式定理,的二项展开式中的第3项的二项式系数为,有,解得.则有,当时,得,的展开式中含项的系数为160.故答案为:160.点睛:本题考查二项式系数的性质,要注意区分某一项的系数与某一项的二项式系数的区别.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)根据正弦定理得到,即,解得答案.(Ⅱ)根据面积公式得到,根据余弦定理得到,得到周长.【题目详解】(Ⅰ)由已知得,由正弦定理得,即.∵,∴,∴.由于,∴.∵,∴.(Ⅱ)由得,,代入上式得.由余弦定理得,∴,∴,∴的周长为.【题目点拨】本题考查了正弦定理,余弦定理,面积公式,等差中项,意在考查学生的计算能力和综合应用能力.18、(1)证明过程详见试题解析;(2)二面角的余弦值为.【解题分析】试题分析:(1)由已知条件可以为坐标原点建立空间坐标系,用坐标表示出,由向量的数量积运算得,根据线面垂直的判定定理得平面;(2)先分别求出平面和平面的法向量,,再根据公式求出二面角的余弦即可.试题解析:(1)如图建立空间直角坐标系,令,则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4).,,平面.平面的法向量为,设平面的法向量为令则,∴二面角的大小的余弦为.考点:1、线面垂直的判定定理;2、二面角.19、(1)见解析;(2)见解析【解题分析】

(1)取中点,连接,则平面即为所求平面,可证明平面;(2)结合(1)先证明三角形是边长为1的正三角形,然后证明,从而可知,由平面,可知,从而可知平面,即可证明.【题目详解】(1)取中点,连接,则平面即为所求平面.∵,,∴且,∴四边形是平行四边形,则,∵平面,平面,∴平面,∵,平面,平面,∴平面,∵平面,平面,且,∴平面平面,∵平面,∴平面,即.(2)由(1)四边形是平行四边形,则,,∵,∴三角形是边长为1的正三角形,∵,,∴,∴,即,∵平面,平面,∴,∵平面,平面,,∴平面,∵平面,∴.【题目点拨】本题考查了平面与平面平行的判定,考查了线面垂直的性质与判定,考查了学生的空间想象能力,属于中档题.20、(1)当时,在上单调递增;当时,在上单调递增,在上单调递减;(2).【解题分析】

(1)根据函数解析式可得定义域和导函数;分别在和两种情况下讨论导函数的符号,从而得到函数的单调性;(2)首先确定解析式和;通过可知;分别在、和三种情况下确定在上的单调性,从而得到最小值的位置,利用最小值构造方程求得结果.【题目详解】(1)由题意得:定义域为:;当时,在上恒成立在上单调递增当时,令,解得:时,;时,在上单调递增;在上单调递减综上所述:当时,在上单调递增;当时,在上单调递增,在上单调递减(2)则令,解得:①当,即时,在上恒成立在上单调递增,解得:,舍去②当,即时,时,;时,在上单调递减;在上单调递增,解得:,符合题意③当,即时,在上恒成立在上单调递减,解得:,舍去

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论