版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届松原市重点中学八年级数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.有位同学参加歌咏比赛,所得的分数互不相同,取得分前位同学进入决赛,小明知道自己的分数后,要判断自己能否进入决赛,他只需知道这位同学得分的()A.平均数 B.中位数 C.众数 D.方差2.函数中自变量x的取值范围是()A.≥-3 B.≥-3且 C. D.且3.要使分式有意义,则x应满足()A.x≠﹣1 B.x≠2 C.x≠±1 D.x≠﹣1且x≠24.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣35.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.106.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.57.如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:以点B为圆心,适当长为半径画弧,交AB,BC于点E,F;再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠ABC内部相交于点H,作射线BH,交DC于点G,则DG的长为()A.1 B.1 C.3 D.28.下面四个应用图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9.已知反比例函数,下列结论不正确的是().A.该函数图像经过点(-1,1) B.该函数图像在第二、四象限C.当x<0时,y随x增大而减小 D.当x>1时,10.下列交通标志图案中,是中心对称图形的是()A. B. C. D.11.若代数式在实数范围内有意义,则实数的取值范围是()A. B. C. D.12.证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:,以下是排乱的证明过程,正确的顺序应是①,.②四边形ABCD是平行四边形.③,.④.⑤,()A.②①③④⑤ B.②③⑤①④ C.②③①④⑤ D.③②①④⑤二、填空题(每题4分,共24分)13.已知是一元二次方程的一根,则该方程的另一个根为_________.14.已知一次函数的图象经过第一、二、四象限,则的取值范围是_____.15.已知,则的值为__________.16.关于一元二次方程的一个根为,则另一个根为__________.17.如图,在中,,将绕顶点顺时针旋转,旋转角为,得到.设中点为,中点为,,连接,当____________时,长度最大,最大值为____________.18.如图,以Rt△ABC的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO.若CA=2,CO=,那么CB的长为________.三、解答题(共78分)19.(8分)计算题(1)(2)20.(8分)定义:对于给定的一次函数y=ax+b(a≠0),把形如的函数称为一次函数y=ax+b(a≠0)的衍生函数.已知矩形ABCD的顶点坐标分别为A(1,0),B(1,2),C(-3,2),D(-3,0).(1)已知函数y=2x+l.①若点P(-1,m)在这个一次函数的衍生函数图像上,则m=.②这个一次函数的衍生函数图像与矩形ABCD的边的交点坐标分别为.(2)当函数y=kx-3(k>0)的衍生函数的图象与矩形ABCD有2个交点时,k的取值范围是.21.(8分)提出问题:(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由.22.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23.(10分)计算:,24.(10分)已知:一次函数y=(3﹣m)x+m﹣1.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.25.(12分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6cm,AC=10cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).(1)求证:四边形ACFD是平行四边形.(2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?(3)将Rt△ABC向左平移4cm,求四边形DHCF的面积.26.如图如图1,四边形ABCD和四边形BCMD都是菱形,(1)求证:∠M=60°(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
由中位数的概念,即最中间一个或两个数据的平均数;可知9人成绩的中位数是第5名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【题目详解】解:由于9个人中,第5名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,需知道这9位同学的分数的中位数.
故选:B.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、B【解题分析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.解答:解:∵≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.3、D【解题分析】试题分析:当(x+1)(x-2)时分式有意义,所以x≠-1且x≠2,故选D.考点:分式有意义的条件.4、D【解题分析】
将x1=1,x2=﹣3代入到方程中,对比前后的方程解的关系,即可列出新的方程.【题目详解】将x1=1,x2=﹣3代入到x2+2x﹣3=0得12+2×1﹣3=0,(-3)2+2×(-3)﹣3=0对比方程(2x+3)2+2(2x+3)﹣3=0,可得2x+3=1或﹣3解得:x1=﹣1,x2=﹣3故选D.【题目点拨】此题考查的是方程的解,掌握前后方程解的关系是解决此题的关键.5、B【解题分析】试题分析:解方程可得:y=2或y=5,当边长为2时,对角线为6就不成立;则边长为5,则周长为20.考点:(1)、菱形的性质;(2)、方程的解6、C【解题分析】
连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【题目详解】连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【题目点拨】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.7、C【解题分析】
利用基本作图得到BG平分∠ABC,再证明△BCG为等腰直角三角形得到GC=CB=4,从而计算CD-CG即可得到DG的长.【题目详解】由图得BG平分∠ABC,
∵四边形ABCD为矩形,CD=AB=7,
∴∠ABC=∠B=,
∴∠CBG=,
∴△BCG为等腰直角三角形,
∴GC=CB=4,
∴DG=CD−CG=7−4=3.
故选:C.【题目点拨】本题考查等腰直角三角形的性质,解题的关键是得到GC=CB=4.8、C【解题分析】
根据轴对称图形和中心对称图形的概念即可得出.【题目详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误;故选C.【题目点拨】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.9、C【解题分析】
∵∴A是正确的;反比例函数k=-1,图象在第二、四象限上,∴B是正确的;当x<0时,图象在第二象限上,y随着x的增大而增大,∴C是错误的;当x>l时,∴D是正确的.故选C10、C【解题分析】
根据中心对称图形的概念,分别判断即可.【题目详解】解:A、B、D不是中心对称图形,C是中心对称图形.故选C.点睛:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.11、B【解题分析】
直接利用分式有意义的条件进而得出答案.【题目详解】∵代数式在实数范围内有意义,∴a-1≠0,∴a≠1.故选B.【题目点拨】此题主要考查了分式有意义的条件,正确把握定义是解题关键.12、C【解题分析】
利用平行四边形的性质证三角形全等,进而得出对应边相等,由此即可明确证明顺序.【题目详解】解:四边形ABCD是平行四边形,,,所以正确的顺序应为②③①④⑤故答案为:C【题目点拨】本题考查了平行四边形对角线互相平分的证明,明确证明思路是解题的关键.二、填空题(每题4分,共24分)13、-2【解题分析】
由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.【题目详解】设方程的另一根为x1,由根与系数的关系可得:1×x1=-2,∴x1=-2.故答案为:-2.【题目点拨】本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.14、【解题分析】
若函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,由此可以确定m的取值范围.【题目详解】解:∵直线y=(2m-3)x-m+5经过第一、二、四象限,
∴2m-3<0,-m+5>0,
故m<.
故答案是:m<.【题目点拨】考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.15、【解题分析】
根据二次根式有意义的条件可求得x的值,继而可求得y值,代入所求式子即可求得答案.【题目详解】由题意得,解得:x=4,所以y=3,所以=,故答案为:.【题目点拨】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.16、1【解题分析】
利用根与系数的关系可得出方程的两根之积为-1,结合方程的一个根为-1,可求出方程的另一个根,此题得解.【题目详解】∵a=1,b=m,c=-1,
∴x1•x2==-1.
∵关于x一元二次方程x2+mx-1=0的一个根为x=-1,
∴另一个根为-1÷(-1)=1.
故答案为:1.【题目点拨】此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.17、3【解题分析】
连接CP,当点E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.【题目详解】∵,,∴AB=4,∠A=60°,由旋转得=∠A=60°,=AB=4,∵中点为,∴=2,∴△是等边三角形,∴∠=60°,如图,连接CP,当旋转到点E、C、P三点共线时,EP最长,此时,∵点E是AC的中点,,∴CE=1,∴EP=CE+PC=3,故答案为:
120,3.【题目点拨】此题考查直角三角形的性质,等边三角形的判定及性质,旋转的性质,解题中首先确定解题思路,根据旋转得到EP的最大值即是CE+PC在进行求值,确定思路是解题的关键.18、+2【解题分析】如图,在BC上截取BD=AC=2,连接OD,∵四边形AFEB是正方形,∴AO=BO,∠AOB=∠ACB=90°,∴∠CAO=90°-∠ACH,∠DBO=90°-∠BHO,∵∠ACH=∠BHO,∴∠CAO=∠DBO,∴△ACO≌△BDO,∴DO=CO=,∠AOC=∠BOD,∵∠BOD+∠AOD=90°,∴∠AOD+∠AOC=90°,即∠COD=90°,∴CD=,∴BC=BD+CD=.故答案为:.点睛:本题的解题要点是,通过在BC上截取BD=AC,并结合已知条件证△ACO≌△BDO来证得△COD是等腰直角三角形,这样即可求得CD的长,从而使问题得到解决.三、解答题(共78分)19、(1)(2)12【解题分析】
(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【题目详解】(1)原式==;(2)原式=6-12+12-(20-2)=-12.【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20、(1)①1,②(,2)或(,,0);(2)1<k<1;【解题分析】
(1)①x=-1<0,则m=-2×(-1)+1=1,即可求解;②一次函数的衍生函数图象与矩形ABCD的边的交点位置在BC和AD上,即可求解;(2)当直线在位置①时,函数和矩形有1个交点,当直线在位置②时,函数和图象有1个交点,在图①②之间的位置,直线与矩形有2个交点,即可求解.【题目详解】解:(1)①x=-1<0,则m=-2×(-1)+1=1,故答案为:1;②一次函数的衍生函数图象与矩形ABCD的边的交点位置在BC和AD上,当y=2时,2x+1=2,解得:x=,当y=0时,2x+1=0,解得:x=,故答案为:(,2)或(,,0);(2)函数可以表示为:y=|k|x-1,如图所示当直线在位置①时,函数和矩形有1个交点,当x=1时,y=|k|x-1=1|k|-1=0,k=±1,k>0,取k=1当直线在位置②时,函数和图象有1个交点,同理k=1,故在图①②之间的位置,直线与矩形有2个交点,即:1<k<1.【题目点拨】本题为一次函数综合题,涉及到新定义、直线与图象的交点等,其中(2),要注意分类求解,避免遗漏.21、(1)见解析;(2)EF=GH,理由见解析【解题分析】
(1)由正方形的性质可得AB=DA,∠ABE=90°=∠DAH.又由∠ADO+∠OAD=90°,可证得∠HAO=∠ADO,继而证得△ABE≌△DAH,可得AE=DH;(2)将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据(1)的结论得AM=DN,所以EF=GH;【题目详解】(1)证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.在△ABE和△DAH中∠BAE=∠HDAAB=AD∠B=∠HAD∴△ABE≌△DAH(ASA),∴AE=DH;(2)解:EF=GH.理由:如图所示:将FE平移到AM处,则AM∥EF,AM=EF.将GH平移到DN处,则DN∥GH,DN=GH.∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,所以EF=GH.【题目点拨】此题考查四边形综合题,解题关键在于证明△ABE≌△DAH,再根据平移的性质求得AM=EF,DN=GH.22、(1)证明见解析;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形,理由见解析.【解题分析】
(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据平行四边形的判定先证明AECF是平行四边形,再由证明是矩形即可.【题目详解】(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由是:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,由题意可知CE平分∠ACB,CF平分∠ACB,即∴平行四边形AECF是矩形.【题目点拨】本题主要考查了矩形的判定、平行四边形的判定等知识,根据已知得出∠ECF=90°是解题关键.23、5-2【解题分析】
先根据绝对值、整数指数幂和二次根式的性质化简各数,然后进行加减即可得出答案。【题目详解】解:原式=2-1×1-2+4=5-2【题目点拨】本题考查了实数的混合运算,熟练掌握运算法则是关键。24、(1)m=1;(2)3<m<1【解题分析】
(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.【题目详解】(1)∵一次函数y=(3﹣m)x+m﹣1的图象过原点,∴,解得:m=1.(2)∵一次函数y=(3﹣m)x+m﹣1的图象经过第二、三、四象限,∴,解得:3<m<1.【题目点拨】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.25、(1)见解析;(2)将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)【解题分析】
(1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积,即可解题.【题目详解】(1)证明:∵四边形ACFD是由Rt△ABC平移形成的,∴AD∥CF,AC∥DF.∴四边形ACFD为平行四边形.(2)解:由题易得BC==8(cm),△ABC的面积=24cm2.要使得四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,∴将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)解:将Rt△ABC向左平移4cm,则BE=AD=4cm.又∵BC=8cm,∴CE=4cm=AD.由(1)知四边形ACFD是平行四边形,∴AD∥BF.∴∠HAD=∠HCE.又∵∠DHA=∠EHC,∴△DHA≌△EHC(AAS).∴DH=HE=DE=AB=3cm.∴S△HEC=HE·EC=6cm2.∵△ABC≌△DEF,∴S△ABC=SDEF.由(2)知S△ABC=24cm2,∴S△DEF=24cm2.∴四边形DHCF的面积为S△DEF-S△HEC=24-6=18(cm2).【题目点拨】本题考查平行四边形的判定、三角形面积和平行四边形面积的计算,还考查了全等三角形的判定、中位线定理,考查了勾股定理在直角三角形中的运用,本题中求△CEH的面积是解题的关键.26、(1)证明见解析(2)证明见解析(3)7【解题分析】
(1)利用菱形的四条边相等,可证CD=DM=CM=AD,就可得到△CDM是等边三角形,再利用等边三角形的三个角都是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教室的变迁话题作文9篇
- 中国防静电U形刷项目投资可行性研究报告
- 护踝行业深度研究报告
- 2025委托开发合同协议
- 陵园设计行业深度研究报告
- 2025年浙江省丽水市缙云县国有企业招聘(写作)复习题及答案
- 2025年的通勤车租赁合同范本
- 2025年下半年佛山市安全监管局招考辅助服务雇用人员易考易错模拟试题(共500题)试卷后附参考答案
- 2025外汇资金借款合同范本
- 2025年下半年云浮市中级人民法院招考电脑速录员易考易错模拟试题(共500题)试卷后附参考答案
- 2025至2030年中国白银深加工行业供需态势分析及市场运行潜力报告
- 国家公园考试题型及答案
- 三维城市建模技术-洞察及研究
- 五粮液国庆茅台活动方案
- 日语入门考试试题及答案
- 慢性便秘检查与评估中国专家共识(2024版)解读
- T/CGCC 14-2018无形资产价值评价体系
- T/CBMCA 022-2021陶瓷岩板加工规范
- 调研基层武装部工作报告
- 三级医院评审标准实施细则(2023 年版)
- (高清版)TSG 09-2025 缺陷特种设备召回管理规则
评论
0/150
提交评论