版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同四中联盟体2025届高一下数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角A,B,C所对的边分别为a,b,c,若,,则一定是()A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形2.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.3.的内角的对边分别为成等比数列,且,则等于()A. B. C. D.4.计算的值为().A. B. C. D.5.直线xy+1=0的倾斜角是()A.30° B.60°C.120° D.150°6.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形7.()A. B. C. D.8.在空间直角坐标系中,点P(3,4,5)关于平面的对称点的坐标为()A.(−3,4,5) B.(−3,−4,5)C.(3,−4,−5) D.(−3,4,−5)9.若,则的最小值为()A. B. C.3 D.210.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形二、填空题:本大题共6小题,每小题5分,共30分。11.如图,两个正方形,边长为2,.将绕旋转一周,则在旋转过程中,与平面的距离最大值为______.12.设数列满足,且,则数列的前n项和_______________.13.的化简结果是_________.14.若函数的图象与直线恰有两个不同交点,则的取值范围是________.15.已知一圆台的底面圆的半径分别为2和5,母线长为5,则圆台的高为_______.16.中,,则A的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图(年份代码1-7分别对应年份)(1)建立关于的回归方程(系数精确到0.001);(2)预测2020年我国生活垃圾无害化处理量.附注:参考数据:,,回归方程中斜率和截距的最小二乘估计公式分别为:,.18.如图,在三棱柱中,、分别是棱,的中点,求证:(1)平面;(2)平面平面.19.如图,已知平面,为矩形,分别为的中点,.(1)求证:平面;(2)求证:面平面;(3)求点到平面的距离.20.已知函数的图象向左平移个单位长度后与函数图象重合.(1)求和的值;(2)若函数,求函数的单调递减区间及图象的对称轴方程.21.如图,在四棱锥中,底面是矩形,平面,,.(1)求直线与平面所成角的正弦值;(2)若点分别在上,且平面,试确定点的位置
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用余弦定理、等边三角形的判定方法即可得出.【详解】由余弦定理得,则,即,所以.∵∴是等边三角形.故选D.【点睛】本题考查了余弦定理、等边三角形的判定方法,考查了推理能力与计算能力,熟练掌握余弦定理是解答本题的关键.2、B【解析】
试题分析:掷两颗均匀的骰子,共有36种基本事件,点数之和为5的事件有(1,4),(2,3),(3,2),(4,1)这四种,因此所求概率为,选B.考点:概率问题3、B【解析】
成等比数列,可得,又,可得,利用余弦定理即可得出.【详解】解:成等比数列,,又,,则故选B.【点睛】本题考查了等比数列的性质、余弦定理,考查了推理能力与计算能力,属于中档题.4、D【解析】
利用诱导公式以及特殊角的三角函数值可求出结果.【详解】由诱导公式可得,故选D.【点睛】本题考查诱导公式求值,解题时要熟练利用“奇变偶不变,符号看象限”基本原则加以理解,考查计算能力,属于基础题.5、D【解析】
首先求出直线的斜率,由倾斜角与斜率的关系即可求解.【详解】直线xy+1=0的斜率,设其倾斜角为θ(0°≤θ<180°),则tan,∴θ=150°故选:D【点睛】本题考查直线斜率与倾斜角的关系,属于基础题.6、D【解析】略7、B【解析】
根据诱导公式和两角和的余弦公式的逆用变形即可得解.【详解】由题:故选:B【点睛】此题考查两角和的余弦公式的逆用,关键在于熟记相关公式,准确化简求值.8、A【解析】
由关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,即可得解.【详解】关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,所以点P(3,4,5)关于平面的对称点的坐标为(−3,4,5).故选A.【点睛】本题主要考查了空间点的对称点的坐标求法,属于基础题.9、A【解析】
由题意知,,,再由,进而利用基本不等式求最小值即可.【详解】由题意,,因为,所以,,所以,当且仅当,即时,取等号.故选:A.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.10、A【解析】
本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【点睛】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
绕旋转一周得到的几何体是圆锥,点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像,根据图像判断出圆的下顶点距离平面的距离最大,解三角形求得这个距离的最大值.【详解】绕旋转一周得到的几何体是圆锥,故点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像如下图所示,根据图像作法可知,当位于圆心的正下方点位置时,到平面的距离最大.在平面内,过作,交于.在中,,.所以①.其中,,所以①可化为.故答案为:【点睛】本小题主要考查旋转体的概念,考查空间点到面的距离的最大值的求法,考查空间想象能力和运算能力,属于中档题.12、【解析】令13、【解析】原式,因为,所以,且,所以原式.14、【解析】
作出函数的图像,根据图像可得答案.【详解】因为,所以,所以,所以,作出函数的图像,由图可知故答案为:【点睛】本题考查了正弦型函数的图像,考查了数形结合思想,属于基础题.15、4【解析】
根据圆台轴截面等腰梯形计算.【详解】,设圆高为,由圆台轴截面是等腰梯形得:,即,,故答案为:4.【点睛】本题考查求圆台的高,解题关键是掌握圆台的性质,圆台轴截面是等腰梯形.16、【解析】
由正弦定理将sin2A≤sin2B+sin2C-sinBsinC变为,然后用余弦定理推论可求,进而根据余弦函数的图像性质可求得角A的取值范围.【详解】因为sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因为,所以.【点睛】在三角形中,已知边和角或边、角关系,求角或边时,注意正弦、余弦定理的运用.条件只有角的正弦时,可用正弦定理的推论,将角化为边.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)亿吨【解析】
(1)由题意计算平均数与回归系数,写出回归方程,即可求得答案;(2)计算2020年对应的值以及的值,即可求得答案.【详解】(1)由折线图可得:关于的回归方程:.(2)年对应的值为当时,预测年我国生活垃圾无害化处理量为亿吨.【点睛】本题主要考查了求数据的回归直线方程和根据回归直线方程进行预测,解题关键是掌握回归直线的求法,考查了分析能力和计算能力,属于基础题.18、(1)见证明;(2)见证明【解析】
(1)设与的交点为,连结,证明,再由线面平行的判定可得平面;(2)由为线段的中点,点是的中点,证得四边形为平行四边形,得到,进一步得到平面.再由平面,结合面面平行的判定可得平面平面.【详解】证明:(1)设与的交点为,连结,∵四边形为平行四边形,∴为中点,又是的中点,∴是三角形的中位线,则,又∵平面,平面,∴平面;(2)∵为线段的中点,点是的中点,∴且,则四边形为平行四边形,∴,又∵平面,平面,∴平面.又平面,,且平面,平面,∴平面平面.【点睛】本题考查直线与平面,平面与平面平行的判定,考查空间想象能力与思维能力,是中档题.19、(1)证明见解析;(2)证明见解析;(3).【解析】
(1)利用线面平行的判定定理,寻找面PAD内的一条直线平行于MN,即可证出;(2)先证出一条直线垂直于面PCD,依据第一问结论知,MN也垂直于面PCD,利用面面垂直的判定定理即可证出;(3)依据等积法,即可求出点到平面的距离.【详解】证明:(1)取中点为,连接分别为的中点,是平行四边形,平面,平面,∴平面证明:(2)因为平面,所以,而,面PAD,而面,所以,由,为的终点,所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,则点到平面的距离为(也可构造三棱锥)【点睛】本题主要考查线面平行、面面垂直的判定定理以及等积法求点到面的距离,意在考查学生的直观想象、逻辑推理、数学运算能力.20、(1),;(2)减区间为,对称轴方程为【解析】
(1)先根据平移后周期不变求得,再根据三角函数的平移方法求得即可.(2)根据(1)中,代入可得,利用辅助角公式求得,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数的图象向左平移个单位长度后与函数图象重合,所以.所以,因为,所以.(2)由(1),,所以,.令,解得所以函数的单调递减区间为.令,可得图象的对称轴方程为.【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.21、(1);(2)M为AB的中点,N为PC的中点【解析】
(1)由题意知,AB,AD,AP两两垂直.以为正交基底,建立空间直角坐标系,求平面PCD的一个法向量为,由空间向量的线面角公式求解即可;(2)设,利用平面PCD,所以∥,得到的方程,求解即可确定M,N的位置【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026吉林省路桥工程(集团)有限公司项目部劳务派遣人员招聘114人笔试备考题库及答案解析
- 2026年江西工业职业技术学院单招综合素质考试备考试题含详细答案解析
- 2026上半年杭州市卫生健康委员会所属十家事业单位招聘116人笔试备考试题及答案解析
- 2026“才聚齐鲁成就未来”山东土地资本投资集团有限公司社会招聘11人笔试备考试题及答案解析
- 2026上海高等研究院光源科学中心博士后研究人员招收2人笔试备考题库及答案解析
- 2026江西事业单位联考吉安市事业单位招聘944人笔试备考试题及答案解析
- 2026云南昆明市西山区人才资源运营管理有限公司招募高校毕业见习人员6人笔试备考题库及答案解析
- 2026北京市海淀区实验小学教育集团招聘笔试备考题库及答案解析
- 2026江苏南京大学XZ2026-021海外教育学院行政主管招聘笔试备考题库及答案解析
- 2026山东菏泽学院计算机学院诚聘高层次人才笔试备考题库及答案解析
- 2026年新广西安全员a证考试试题及答案
- 合同法讲座课件
- 2026年及未来5年市场数据中国多旋翼无人机行业市场全景调研及投资规划建议报告
- 扁鹊凹凸脉法课件
- 足浴店入股合同协议书
- JJF(石化) 001-2023 漆膜耐洗刷试验仪校准规范
- 【百思特】华为手机品牌变革历程研究白皮书
- 2025年湖南铁路科技职业技术学院单招职业技能测试题库及答案1套
- 加气站气瓶充装质量保证体系手册2024版
- Rexroth (博世力士乐)VFC 3610系列变频器使用说明书
- 全麻苏醒期躁动
评论
0/150
提交评论