山东省济宁市任城区2024-2025学年初三第二学期学业水平考试数学试题含解析_第1页
山东省济宁市任城区2024-2025学年初三第二学期学业水平考试数学试题含解析_第2页
山东省济宁市任城区2024-2025学年初三第二学期学业水平考试数学试题含解析_第3页
山东省济宁市任城区2024-2025学年初三第二学期学业水平考试数学试题含解析_第4页
山东省济宁市任城区2024-2025学年初三第二学期学业水平考试数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济宁市任城区2024-2025学年初三第二学期学业水平考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若关于x、y的方程组有实数解,则实数k的取值范围是()A.k>4 B.k<4 C.k≤4 D.k≥42.=()A.±4 B.4 C.±2 D.23.如图所示,,结论:①;②;③;④,其中正确的是有()A.1个 B.2个 C.3个 D.4个4.下列计算正确的是()A.a2•a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a105.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×1056.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64° C.77° D.87°7.化简÷的结果是()A. B. C. D.2(x+1)8.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距离景点2100米 D.乙距离景点420米9.下列运算正确的是()A.4x+5y=9xy B.(−m)3•m7=m10C.(x3y)5=x8y5 D.a12÷a8=a410.下列计算正确的是()A.﹣= B.=±2C.a6÷a2=a3 D.(﹣a2)3=﹣a6二、填空题(共7小题,每小题3分,满分21分)11.不等式组的解是____.12.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.13.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)14.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.15.化简:÷=_____.16.在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为______.17.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=BD,若四边形AECF为正方形,则tan∠ABE=_____.三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系中,直线y1=2x+b与坐标轴交于A、B两点,与双曲线(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,点B的坐标为(0,﹣2).(1)求直线y1=2x+b及双曲线(x>0)的表达式;(2)当x>0时,直接写出不等式的解集;(3)直线x=3交直线y1=2x+b于点E,交双曲线(x>0)于点F,求△CEF的面积.19.(5分)观察下列算式:①1×3-22="3"-4=-1②2×4-32="8"-9=-1③3×5-42="15"-16=-1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.20.(8分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧).()求点、点的坐标;()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点.①求证:点是这个新抛物线与直线的唯一交点;②将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围.21.(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?22.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.23.(12分)先化简,再计算:其中.24.(14分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式≥0来确定k的取值范围.【详解】解:∵xy=k,x+y=4,∴根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根.解不等式得故选:C.本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.2、B【解析】

表示16的算术平方根,为正数,再根据二次根式的性质化简.【详解】解:,故选B.本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.3、C【解析】

根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.【详解】解:如图:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正确)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正确)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选C.此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.4、B【解析】

根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.【详解】A、a2•a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选B.本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.5、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:1.21万=1.21×104,故选:C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、C【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.7、A【解析】

原式利用除法法则变形,约分即可得到结果.【详解】原式=•(x﹣1)=.故选A.本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.8、D【解析】

根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.9、D【解析】

各式计算得到结果,即可作出判断.【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3•m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12÷a8=a4,正确;故选D.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10、D【解析】

根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A.不是同类二次根式,不能合并,故A选项错误;B.=2≠±2,故B选项错误;C.

a6÷a2=a4≠a3,故C选项错误;D.

(−a2)3=−a6,故D选项正确.故选D.本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】

分别求出各不等式的解集,再求出其公共解集即可.【详解】解不等式①,得x>1,

解不等式②,得x≤1,

所以不等式组的解集是1<x≤1,

故答案是:1<x≤1.考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).12、1【解析】

要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==1cm.故答案为1.考点:平面展开-最短路径问题.13、<【解析】

先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,

∵1<x1<1,3<x1<4,

∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,

∴y1<y1.

故答案为<.14、【解析】

首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.15、m【解析】解:原式=•=m.故答案为m.16、cm【解析】

利用已知得出底面圆的半径为:1cm,周长为2πcm,进而得出母线长,即可得出答案.【详解】∵半径为1cm的圆形,∴底面圆的半径为:1cm,周长为2πcm,扇形弧长为:2π=,∴R=4,即母线为4cm,∴圆锥的高为:(cm).故答案为cm.此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.17、【解析】

利用正方形对角线相等且互相平分,得出EO=AO=BE,进而得出答案.【详解】解:∵四边形AECF为正方形,

∴EF与AC相等且互相平分,

∴∠AOB=90°,AO=EO=FO,

∵BE=DF=BD,

∴BE=EF=FD,

∴EO=AO=BE,

∴tan∠ABE==.

故答案为:此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=BE是解题关键.三、解答题(共7小题,满分69分)18、(1)直线解析式为y1=2x﹣2,双曲线的表达式为y2=(x>0);(2)0<x<2;(3)【解析】

(1)将点B的代入直线y1=2x+b,可得b,则可以求得直线解析式;令y=0可得A点坐标为(1,0),又因为OA=AD,则D点坐标为(2,0),把x=2代入直线解析式,可得y=2,从而得到点C的坐标为(2,2),在把(2,2)代入双曲线y2=,可得k=4,则双曲线的表达式为y2=(x>0).(2)由x的取值范围,结合图像可求得答案.(3)把x=3代入y2函数,可得y=;把x=3代入y1函数,可得y=4,从而得到EF,由三角形的面积公式可得S△CEF=.【详解】解:(1)将点B的坐标(0,﹣2)代入直线y1=2x+b,可得﹣2=b,∴直线解析式为y1=2x﹣2,令y=0,则x=1,∴A(1,0),∵OA=AD,∴D(2,0),把x=2代入y1=2x﹣2,可得y=2,∴点C的坐标为(2,2),把(2,2)代入双曲线y2=,可得k=2×2=4,∴双曲线的表达式为y2=(x>0);(2)当x>0时,不等式>2x+b的解集为0<x<2;(3)把x=3代入y2=,可得y=;把x=3代入y1=2x﹣2,可得y=4,∴EF=4﹣=,∴S△CEF=××(3﹣2)=,∴△CEF的面积为.本题考察了一次函数和双曲线例函数的综合;熟练掌握由点求解析式是解题的关键;能够结合图形及三角形面积公式是解题的关键.19、⑴4×6-5⑵答案不唯一.如n(n+2)-(n+1)⑶n(n+2)-(n+1)2==-1.【解析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立.利用整式的混合运算方法加以证明.20、(1)B(-3,0),C(1,0);(2)①见解析;②≤t≤6.【解析】

(1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y=0,即可得解;(2)①根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;②当t=0时,直线与抛物线只有一个交点N(3,-6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1+t,0),代入直线解析式:y=-4x+6+t,解得t=;最后一个交点是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.【详解】(1)因为抛物线的顶点为M(-1,-2),所以对称轴为x=-1,可得:,解得:a=,c=,所以抛物线解析式为y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);(2)①翻折后的解析式为y=-x2-x,与直线y=-4x+6联立可得:x2-3x+=0,解得:x1=x2=3,所以该一元二次方程只有一个根,所以点N(3,-6)是唯一的交点;②≤t≤6.本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.21、(1)111,51;(2)11.【解析】

(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:解得:x=51,经检验x=51是原方程的解,则甲工程队每天能完成绿化的面积是51×2=111(m2),答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;(2)设应安排甲队工作y天,根据题意得:1.4y+×1.25≤8,解得:y≥11,答:至少应安排甲队工作11天.22、(1)详见解析;(2)【解析】

(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.【详解】(1)连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论