2025届江苏省东海县九上数学开学预测试题【含答案】_第1页
2025届江苏省东海县九上数学开学预测试题【含答案】_第2页
2025届江苏省东海县九上数学开学预测试题【含答案】_第3页
2025届江苏省东海县九上数学开学预测试题【含答案】_第4页
2025届江苏省东海县九上数学开学预测试题【含答案】_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2025届江苏省东海县九上数学开学预测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在菱形中,=120°,点E是边的中点,P是对角线上的一个动点,若AB=2,则PB+PE的最小值是()A.1 B. C.2 D.2、(4分)为了解我县2019年八年级末数学学科成绩,从中抽取200名八年级学生期末数学成绩进行统计分析,在这个问题中,样本是指()A.200B.我县2019年八年级学生期末数学成绩C.被抽取的200名八年级学生D.被抽取的200名我县八年级学生期末数学成绩3、(4分)某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为()A.x(27﹣3x)=75 B.x(3x﹣27)=75C.x(30﹣3x)=75 D.x(3x﹣30)=754、(4分)下列四组线段中,可以构成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,65、(4分)已知不等式组的解集如图所示(原点未标出,数轴的单位长度为1),则的值为()A.4 B.3 C.2 D.16、(4分)下列式子没有意义的是()A. B. C. D.7、(4分)下列选项中,可以用来证明命题“若a²>1,则a>1”是假命题的反例是()A.a=-2. B.a==-1 C.a=1 D.a=28、(4分)已知关于的一元二次方程的一个根是0,则的值为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)分式与的最简公分母是_____.10、(4分)如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A=度.11、(4分)如图,▱ABCD的对角线AC、BD相交于点O,点E是CD的中点;若AD=8cm,则OE的长为_______.12、(4分)已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是_________.13、(4分)当1≤x≤5时,三、解答题(本大题共5个小题,共48分)14、(12分)己知反比例函数(常数,)(1)若点在这个函数的图像上,求的值;(2)若这个函数图像的每一支上,都随的增大而增大,求的取值范围;(3)若,试写出当时的取值范围.15、(8分)已知二次函数(1)若该函数与轴的一个交点为,求的值及该函数与轴的另一交点坐标;(2)不论取何实数,该函数总经过一个定点,①求出这个定点坐标;②证明这个定点就是所有抛物线顶点中纵坐标最大的点。16、(8分)下图是交警在一个路口统计的某个时段来往车辆的车速情况.应用你所学的统计知识,写一份简短的报告,让交警知道这个时段路口来往车辆的车速情况.17、(10分)如图,一架5米长的梯子AB斜靠在一面墙上,梯子底端B到墙底的垂直距离BC为3米.(1)求这个梯子的顶端A到地面的距离AC的值;(2)如果梯子的顶端A沿墙AC竖直下滑1米到点D处,求梯子的底端B在水平方向滑动了多少米?18、(10分)如图在△ABC中,AD是BC边上的高,CE是AB边上的中线,且∠B=2∠BCE,求证:DC=BE.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.20、(4分)如图是棱长为4cm的立方体木块,一只蚂蚁现在A点,若在B点处有一块糖,它想尽快吃到这块糖,则蚂蚁沿正方体表面爬行的最短路程是______cm.21、(4分)飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s60t1.5t2,则飞机着陆后滑行直到停下来滑行了__________米.22、(4分)如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,CE=3,则DF_____.23、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在等腰直角三角形ABC中,∠ACB=90°,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm.(1)求证△CBE≌△ACD(2)求线段BE的长25、(10分)计算:(-)(+)--|-3|26、(12分)如图,方格纸中每个小方格都长为1个单位的正方形,已知学校位置坐标为A(1,2)。(1)请在图中建立适当的平面直角坐标系;(2)写出图书馆B位置的坐标。

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,求出即可.解:连接DE交AC于P,连接DE,DB,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠ABC=120°,∴∠BAD=60°,∵AD=AB,∴△ABC是等边三角形,∵AE=BE,∴DE⊥AB(等腰三角形三线合一的性质).在Rt△ADE中,DE==.即PB+PE的直线值为.故选B.“点睛”本题主要考查轴对称.最短路线问题,勾股定理等知识点.确定P点的位置是解答此题的关键.2、D【解析】

根据样本是总体中所抽取的一部分个体解答即可.【详解】本题的研究对象是:我县2019年八年级末数学学科成绩,因而样本是抽取200名八年级学生期末数学成绩.故选:D.本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3、C【解析】

设矩形宽为xm,根据可建墙体总长可得出矩形的长为(30-3x)m,再根据矩形的面积公式,即可列出关于x的一元二次方程,此题得解【详解】解:设矩形宽为xm,则矩形的长为(30﹣3x)m,根据题意得:x(30﹣3x)=1.故选:C.本题考查的是一元二次方程,熟练掌握一元二次方程是解题的关键.4、C【解析】

根据勾股定理的逆定理逐项判断即可.【详解】A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、42+52≠62,不能构成直角三角形,故不符合题意.故选:C.本题考查勾股定理的逆定理,如果三角形的三边长为a,b,c,有下面关系:a2+b2=c2,那么这个三角形是直角三角形.5、A【解析】

首先解不等式组,然后即可判定的值.【详解】,解得,解得由数轴,得故选:A.此题主要考查根据不等式组的解集求参数的值,熟练掌握,即可解题.6、A【解析】试题分析:A.没有意义,故A符合题意;B.有意义,故B不符合题意;C.有意义,故C不符合题意;D.有意义,故D不符合题意;故选A.考点:二次根式有意义的条件.7、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题:用来证明命题“若a2>2,则a>2”是假命题的反例可以是:a=-2.因为a=-2时,a2>2,但a<2.故选A8、C【解析】

根据一元二次方程的解的定义、一元二次方程的定义求解,把x=0代入一元二次方程即可得出m的值.【详解】解:把x=0代入方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,解得:m=±2,∵m﹣2≠0,∴m=﹣2,故选:C.本题逆用一元二次方程解的定义易得出m的值,但不能忽视一元二次方程成立的条件m﹣2≠0,因此在解题时要重视解题思路的逆向分析.二、填空题(本大题共5个小题,每小题4分,共20分)9、2a-2b【解析】

根据确定最简公分母的方法求解即可.【详解】解:∵分式与的分母分别是:2a-2b=2(a-b),b-a=-(a-b),∴最简公分母是2a-2b,故答案为:2a-2b.本题考查了最简公分母的定义及求法,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.10、60【解析】试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.考点:线段垂直平分线的性质11、4cm【解析】

先说明OE是△ACD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【详解】∵▱ABCD的对角线AC、BD相交于点O,∴OA=OC,∵点E是CD的中点,∴CE=DE,∴OE是△ACD的中位线,∵AD=8cm,∴OE=AD=×8=4cm,故答案为:4cm.本题考查了平行四边形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.12、1.【解析】解:∵1,3,x,1,5,它的平均数是3,∴(1+3+x+1+5)÷5=3,∴x=4,∴S1=[(1﹣3)1+(3﹣3)1+(4﹣3)1+(1﹣3)1+(5﹣3)1]=1;∴这个样本的方差是1.故答案为1.13、1.【解析】试题分析:根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.试题解析:∵1≤x≤5,∴x-1≥2,x-5≤2.故原式=(x-1)-(x-5)=x-1-x+5=1.考点:二次根式的性质与化简.三、解答题(本大题共5个小题,共48分)14、(1);(2);(3)【解析】

(1)把点代入函数即可求解;(2)根据这个函数图像的每一支上,都随的增大而增大,求出k即可;(3)当,求出x的范围即可;【详解】(1)把点代入函数,得2=得k=4;(2)∵这个函数图像的每一支上,都随的增大而增大,求出k即可;∴k-2<0∴(3)当,∵∴-3≤≤-2∴本题考查的是的反比例函数,熟练掌握反比例函数的性质是解题的关键.15、(1);(2)①(2,6);②点(2,6)【解析】

(1)将代入,求得a的值,然后再确定与x轴的另一交点.(2)①整理,使a的系数为0,从而确定x,进而确定y,即可确定定点.②先确定顶点坐标,继而根据二次函数的性质进行说明即可.【详解】解:(1)代入得,∴,∴,∴另一交点为.(2)①整理得,令代入,得:,故定点为,②∵,∴顶点为,又∵,∴时纵坐标有最大值6,∴顶点坐标为是所有顶点中纵坐标最大的点.本题考查了二次函数图像的性质及整式的变形,其中根据需要对整式进行变形是解答本题的关键.16、见解析【解析】

根据图形中的信息可得出最高速度与最低速度,其中速度最多的车辆有多少等等,最后组织语言交代清楚即可.【详解】由图可得:此处车辆速度平均在51千米/小时以上,大多以53千米/小时或54千米/小时速度行驶,最高速度为53千米/小时,有超过一半的速度在52千米/小时以上,行驶速度众数为53.本题主要考查了统计图的认识,熟练掌握相关概念是解题关键.17、(1)4(2)1【解析】

(1)在直角三角形ABC中,利用勾股定理即可求出AC的长;(2)首先求出CD的长,利用勾股定理可求出CE的长,进而得到BE=CE-CB的值.【详解】(1)在Rt△ABC中,由勾股定理得AC2+CB2=AB2,即AC2+32=52,所以AC=4(m),即这个梯子的顶端A到地面的距离AC为4m;(2)DC=4-1=3(m),DE=5=m,在Rt△DCE中,由勾股定理得DC2+CE2=DE2,即32+CE2=52,所以CE=5(m),BE=CE-CB=4-3=1(m),即梯子的底端B在水平方向滑动了1m.本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变这一关系进行求解是解题的关键.18、见解析.【解析】

连接DE.想办法证明∠BCE=∠DEC即可解决问题.【详解】证明:连接DE.∵AD是BC边上的高,CE是AB边上的中线,∴∠ADB=90°,AE=BE,∴BE=AE=DE,∴∠EBD=∠BDE,∵∠B=2∠BCE,∴∠BDE=2∠BCE,∵∠BDE=∠BCE+∠DEC,∴∠BCE=∠DEC,∴BE=DC.本题考查等腰三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..【详解】设点P坐标为(a,0)则点A坐标为(a,),B点坐标为(a,﹣)∴S△ABC=S△ABO=S△APO+S△OPB==,故答案为.【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.20、【解析】

根据“两点之间线段最短”,将点A和点B所在的各面展开,展开为矩形,AB为矩形的对角线的长即为蚂蚁沿正方体表面爬行的最短距离,再由勾股定理求解即可.【详解】将点A和点B所在的面展开为矩形,AB为矩形对角线的长,∵矩形的长和宽分别为8cm和4cm,∴AB==cm.故蚂蚁沿正方体的最短路程是cm.故答案为:.本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.21、1【解析】

将化为顶点式,即可求得s的最大值.【详解】解:,则当时,取得最大值,此时,故飞机着陆后滑行到停下来滑行的距离为:.故答案为:1.本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.22、=3【解析】分析:根据直角三角形的斜边上的中线等于斜边的一半,可得AB的长,然后根据三角形的中位线的性质,求出DF的长.详解:∵在△ABC中,∠ACB=90°,E为AB的中点,CE=3∴AB=6∵D、F为AC、BC的中点∴DF=AB=3.故答案为3.点睛:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.23、()n-1【解析】试题分析:已知第一个矩形的面积为1;第二个矩形的面积为原来的()2-1=;第三个矩形的面积是()3-1=;…故第n个矩形的面积为:.考点:1.矩形的性质;2.菱形的性质.二、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论