版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省郑州市第五中学高二上数学期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.与圆和圆都外切的圆的圆心在()A.一个圆上 B.一个椭圆上C.双曲线的一支上 D.一条抛物线上2.已知命题p:,总有,则为()A.,使得 B.,使得C.,总有 D.,总有3.在公比为为q等比数列中,是数列的前n项和,若,则下列说法正确的是()A. B.数列是等比数列C. D.4.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.5.经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A. B.C. D.6.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.37.已知m是2与8的等比中项,则圆锥曲线x2﹣=1的离心率是()A.或 B.C. D.或8.若,,则下列各式中正确的是()A. B.C. D.9.已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上 B.在轴上C.当时在轴上 D.当时在轴上10.已知直线:与双曲线的两条渐近线分别相交于A、B两点,若C为直线与y轴的交点,且,则k等于()A.4 B.6C. D.11.七巧板是一种古老的中国传统智力玩具,顾名思义,是由七块板组成的.这七块板可拼成许多图形(1600种以上),如图所示,某同学用七巧板拼成了一个“鸽子”形状,若从“鸽子”身上任取一点,则取自“鸽子头部”(图中阴影部分)的概率是()A. B.C. D.12.已知,为双曲线的左,右顶点,点P在双曲线C上,为等腰三角形,且顶角为,则双曲线C的离心率为()A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线:,若直线与抛物线C相交于M,N两点,则_______________.14.过点与直线平行的直线的方程是________.15.若随机变量,则______.16.秦九韶出生于普州(今资阳市安岳县),是我国南宋时期伟大的数学家,他创立的秦九韶算法历来为人称道,其本质是将一个次多项式写成个一次式相组合的形式,如可将写成,由此可得__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,点在底面内的射影恰好是点,是的中点,且满足(1)求证:平面;(2)已知,直线与底面所成角的大小为,求二面角的大小18.(12分)如图所示,在正方体中,点,,分别是,,的中点(1)证明:;(2)求直线与平面所成角的大小19.(12分)已知函数.(1)当时,求函数的极值;(2)若对,恒成立,求的取值范围.20.(12分)已知椭圆的离心率为,点在椭圆上,直线与交于,两点(1)求椭圆的方程及焦点坐标;(2)若线段的垂直平分线经过点,求的取值范围21.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,其中第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:参考公式:,月份12345违章驾驶员人数1201051009580(1)请利用所给数据求违章人数y与月份x之间的回归直线方程;(2)预测该路口10月份的不“礼让斑马线”违章驾驶员人数;22.(10分)在△ABC中,角A,B,C所对的边为a,b,c,其中,,且(1)求角B的值;(2)若,判断△ABC的形状
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设动圆的半径为,然后根据动圆与两圆都外切得,再两式相减消去参数,则满足双曲线的定义,即可求解.【详解】设动圆的圆心为,半径为,而圆的圆心为,半径为1;圆的圆心为,半径为2依题意得,则,所以点的轨迹是双曲线的一支故选:C2、B【解析】由含有一个量词的命题的否定的定义求解.【详解】因为命题p:,总有是全称量词命题,所以其否定为存在量词命题,即,使得,故选:B3、D【解析】根据等比数列的通项公式、前项和公式的基本量运算,即可得到答案;【详解】,,故A错误;,,显然数列不是等比数列,故B错误;,故C错误;,,故D成立;故选:D4、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C5、A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题6、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C7、A【解析】利用等比数列求出m,然后求解圆锥曲线的离心率即可【详解】解:m是2与8的等比中项,可得m=±4,当m=4时,圆锥曲线为双曲线x2﹣=1,它的离心率为:,当m=-4时,圆锥曲线x2﹣=1为椭圆,离心率:,故选:A8、D【解析】根据题意,结合,,利用不等式的性质可判断,从而判断,再利用不等式性质得出正确答案.【详解】,,,又,,两边同乘以负数,可知故选:D9、B【解析】设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置【详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力10、D【解析】先求出双曲线的渐近线方程,然后分别与直线联立,求出A、B两点的横坐标,再利用可求解.【详解】由双曲线方程可知其渐近线方程为:,当时,与联立,得,同理得,由,且可知,所以有,解得.故选:D11、C【解析】设正方形边长为1,求出七巧板中“4”这一块的面积,然后计算概率【详解】设正方形边长为1,由正方形中七巧板形状知“4”这一块是正方形,边长为,面积为,所以概率为故选:C12、A【解析】根据给定条件求出点P的坐标,再代入双曲线方程计算作答.【详解】由双曲线对称性不妨令点P在第一象限,过P作轴于B,如图,因为等腰三角形,且顶角为,则有,,有,于是得,即点,因此,,解得,所以双曲线C的离心率为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】直线方程代入抛物线方程,应用韦达定理根据弦长公式求弦长【详解】设,由得,所以,,故答案为:814、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:15、2【解析】根据给定条件利用二项分布的期望公式直接计算作答.【详解】因为随机变量,所以.故答案:216、【解析】利用代入法进行求解即可.【详解】故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)分别证明出和,利用线面垂直的判定定理即可证明;(2)以C为原点,为x、y、z轴正方向建立空间直角坐标系,用向量法求二面角的平面角.【小问1详解】因为点在底面内的射影恰好是点,所以面.因为面,所以.因为是的中点,且满足.所以,所以.因为,所以,即,所以.因为,面,面,所以平面.【小问2详解】∵面,∴直线与底面所成角为,即.因为,所以由(1)知,,因,所以,.如图示,以C为原点,为x、y、z轴正方向建立空间直角坐标系.则,,,,所以,设,由得,,即.则.设平面BDC1的一个法向量为,则,不妨令,则.因为面,所以面的一个法向量为记二面角的平面角为,由图知,为锐角.所以,即.所以二面角的大小为.18、(1)证明见解析(2)【解析】(1)连接,可得,从而可证四边形是平行四边形,从而证明结论.(2)以为坐标原点,分别以,,所在直线为,,轴,建立空间直角坐标系,利用向量法求解线面角.【小问1详解】如图,连接在正方体中,且因为,分别是,的中点,所以且又因为是的中点,所以,且,所以四边形是平行四边形,所以【小问2详解】以为坐标原点,分别以,,所在直线为,,轴,建立如图所示的空间直角坐标系设,则,,,,,,设为平面的法向量因为,,,所以令,得设直线与平面所成角为,则因为,所以直线与平面所成角的大小为19、(1)极小值为,无极大值;(2).【解析】(1)对函数进行求导、列表、判断函数的单调性,最后根据函数极值的定义进行求解即可;(2)对进行常变量分离,然后构造新函数,对新函数进行求导,判断其单调性,进而求出新函数的最值,最后根据题意求出的取值范围即可.【详解】(1)函数的定义域为,当时,.由,得.当变化时,,的变化情况如下表-0+单调递减极小值单调递增所以在上单调递减,上单调递增,所以函数的极小值为,无极大值.(2)对,恒成立,即对,恒成立.令,则.由得,当时,,单调递增;当时,,单调递减,所以,因此.所以的取值范围是.【点睛】本题考查了利用导数研究函数的单调性、极值、最值,考查了构造函数法、常变量分离法,考查了数学运算能力和分类讨论思想.20、(1),(2)【解析】(1)由题意,列出关于a,b,c的方程组求解即可得答案;(2)设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),则,作差可得①,又线段MN的垂直平分线过点A(0,1),则②,联立直线MN与椭圆的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式联立即可求解【小问1详解】解:由题意可得,解得,所以椭圆C的方程为,焦点坐标为【小问2详解】解:设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),因为,所以,即,所以①,因为线段MN的垂直平分线过点A(0,1),所以,即②,联立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k2>0(*),③,把③代入②,得④,把③④代入①得,所以,即,代入(*)得,解得,又k≠0,所以k的取值范围为21、(1);(2)37【解析】(1)将题干数据代入公式求出与,进而求出回归直线方程;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年福建生物工程职业技术学院单招职业技能考试必刷测试卷及答案1套
- 房屋出售委托代理协议范本
- 2026年云南现代职业技术学院单招职业技能考试必刷测试卷新版
- 2026年赣州职业技术学院单招职业适应性测试必刷测试卷附答案
- 2026年乌鲁木齐职业大学单招职业适应性测试必刷测试卷及答案1套
- 2026年武汉警官职业学院单招职业技能考试题库新版
- 2026年桂林山水职业学院单招职业适应性测试题库及答案1套
- 2026年罗定职业技术学院单招职业技能测试必刷测试卷附答案
- 2026年湄洲湾职业技术学院单招职业倾向性考试题库及答案1套
- 2026年武汉铁路桥梁职业学院单招综合素质考试必刷测试卷新版
- 2025年海南省万宁市招聘事业单位工作人员笔试高频重点提升(共500题)附带答案详解
- 华为5G基站日常维护操作手册
- 内蒙古自治区乌兰察布市初中联盟校2024-2025学年七年级上学期期中语文试题(含答案)
- 3.2.1探秘“钠女士”被困的原因 课件 高一上学期化学苏教版(2019)必修第一册
- 【9上英YL】芜湖市2024-2025学年九年级上学期期中英语素质教育评估试卷
- 2024版高中物理公式大全及知识结构图
- 江苏海洋大学《高分子材料分析与测试》2021-2022学年第一学期期末试卷
- 2025年日历表(A4版含农历可编辑)
- 2024年一建答案及真题通信与广电
- 甲苯歧化操作规程-大庆
- 上篇第一单元学会聆听大单元教学设计-高中音乐人音版必修音乐鉴赏
评论
0/150
提交评论