18.2.1 平行四边形的判定定理1、2 华师大版八年级数学下册课件_第1页
18.2.1 平行四边形的判定定理1、2 华师大版八年级数学下册课件_第2页
18.2.1 平行四边形的判定定理1、2 华师大版八年级数学下册课件_第3页
18.2.1 平行四边形的判定定理1、2 华师大版八年级数学下册课件_第4页
18.2.1 平行四边形的判定定理1、2 华师大版八年级数学下册课件_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

18.2平行四边形的判定第18章平行四边形第1课时平行四边形的判定定理1、2情景导入一平行四边形有哪些性质?ABCD对边相等对角相等对角线互相平分那么,怎样判定一个四边形是否是平行四边形呢?根据平行四边形的定义加以判定:两组对边分别平行的四边形是平行四边形。除此之外,是否还存在其他的判定方法?新课探究二由平行四边形的性质“平行四边形的两组对边分别相等”,逆向思考,互换条件与结论,试写出它的逆命题.条件结论平行四边形的两组对边分别相等逆命题一个四边形是平行四边形这个四边形的两组对边分别相等一个四边形的两组对边分别相等这个四边形是平行四边形你认为它是真命题吗?作一个两组对边分别相等的四边形.步骤:

1.任取两点B、D;2.分别以点B

和点D

为圆心、任意长为半径,分别在线段BD

的两侧画弧;3.再分别以点B

和点D为圆心、适当长为半径画弧,与前面所画的弧分别交于点A

和点C;4.顺次连结各点,即得两组对边分别相等的四边形ABCD.BDAC把你作的四边形和其他同学作的进行比较,看看是否都是平行四边形.可以发现,尽管每个人取的边长不一样,但只要对边分别相等,所作的就都是平行四边形.平行四边形的判定定理1两组对边分别相等的四边形是平行四边形.由此可以得到判定平行四边形的一种方法:已知:如图,在四边形ABCD

中,AB=CD,BC=DA.

求证:四边形ABCD

是平行四边形.ABCD分析要证明四边形ABCD是平行四边形,现在只有平行四边形的定义这一种方法,即必须证明AB∥CD,AD∥CB,因此需要连结对角线构造内错角.证明连结

BD.在△ABD

和△CDB

中,

∵AB=

CD,

AD=

CB,

BD=

DB,∴△ABD≌△CDB.

∴∠1=∠3,∠2=∠4.∴AD//CB,AB//CD.四边形ABCD

是平行四边形(两组对边分别平行的四边形是平行四边形).ABCD1234如果只知道四边形的一组对边相等,从边的角度看,加一个什么条件能使下式成立:一组对边相等+平行四边形这组对边平行你能证明吗?作一个有一组对边平行且相等的四边形.步骤:

1.任意画两条平行线m、n;2.在直线m、n

上分别截取AB、CD,使AB=CD;3.分别连结点B、C

和点A、D,即得到一组对边平行且相等的四边形ABCD.nmABCD已知:如图,在四边形ABCD

中,AB∥CD

且AB=CD.

求证:四边形ABCD是平行四边形.ABCD证明连结对角线AC.在△ABC和△CDA中,∵AB//CD,∴∠1=∠2.又∵AB=CD,AC=CA,∴△ABC≌△CDA.∴BC=DA.四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).ABCD12平行四边形的判定定理2

一组对边平行且相等的四边形是平行四边形.由此我们得到平行四边形的另一种判定方法:两组对边分别平行的四边形是平行四边形.AB∥CD,AD∥

BC,ABCD

是平行四边形.ABCD两组对边分别相等的四边形是平行四边形.AB=CD,AD=

BC,ABCD

是平行四边形.ABCD一组对边平行且相等的四边形是平行四边形.AB=CD,AB∥CD,ABCD

是平行四边形.ABCD例1如图,在□ABCD中,点E、F

分别在对边BC

和DA上,且

AF=CE.求证:四边形AECF

是平行四边形.BCDAEF解∵四边形ABCD是平行四边形,∴AD//CB(平行四边形的对边平行),即AF//CE.又∵AF=CE,四边形AECF为平行四边形(一组对边平行且相等的四边形是平行四边形).随堂练习三已知:在四边形ABCD

中,AB∥CD,要使四边形ABCD

为平行四边形,需添加一个条件是什么?ABCDAD∥BC或AB=CD课堂小结四平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论