辽宁省阜新市新邱区阜新二中2025年高三下学期第二阶段检测试题数学试题试卷含解析_第1页
辽宁省阜新市新邱区阜新二中2025年高三下学期第二阶段检测试题数学试题试卷含解析_第2页
辽宁省阜新市新邱区阜新二中2025年高三下学期第二阶段检测试题数学试题试卷含解析_第3页
辽宁省阜新市新邱区阜新二中2025年高三下学期第二阶段检测试题数学试题试卷含解析_第4页
辽宁省阜新市新邱区阜新二中2025年高三下学期第二阶段检测试题数学试题试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省阜新市新邱区阜新二中2025年高三下学期第二阶段检测试题数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知无穷等比数列的公比为2,且,则()A. B. C. D.2.若函数的图象过点,则它的一条对称轴方程可能是()A. B. C. D.3.已知方程表示的曲线为的图象,对于函数有如下结论:①在上单调递减;②函数至少存在一个零点;③的最大值为;④若函数和图象关于原点对称,则由方程所确定;则正确命题序号为()A.①③ B.②③ C.①④ D.②④4.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为()A. B. C. D.5.如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为()A. B. C. D.6.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A. B. C. D.7.设,满足约束条件,则的最大值是()A. B. C. D.8.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么()A. B. C. D.9.设函数满足,则的图像可能是A. B.C. D.10.记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围()A. B. C. D.11.在四面体中,为正三角形,边长为6,,,,则四面体的体积为()A. B. C.24 D.12.下列函数中,既是奇函数,又是上的单调函数的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,,则_________.14.设函数满足,且当时,又函数,则函数在上的零点个数为___________.15.设复数满足,则_________.16.设为等比数列的前项和,若,且,,成等差数列,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项.(1)求证:数列为等差数列;(2)设,求的前100项和.18.(12分)如图,四棱锥中,底面,,点在线段上,且.(1)求证:平面;(2)若,,,,求二面角的正弦值.19.(12分)已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1.(I)求{an}的通项公式;(Ⅱ)若数列{bn}满足:…,求{bn}的前n项和.20.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.21.(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,点G为CD中点,平面EAD⊥平面ABCD.(1)证明:BD⊥EG;(2)若三棱锥,求菱形ABCD的边长.22.(10分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,,解得,所以,,故选A。本题主要考查无穷等比数列求和公式的应用。2.B【解析】

把已知点坐标代入求出,然后验证各选项.【详解】由题意,,或,,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,,即是对称轴.故选:B.本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键.3.C【解析】

分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,,此时不存在图象;(2)当时,,此时为实轴为轴的双曲线一部分;(3)当时,,此时为实轴为轴的双曲线一部分;(4)当时,,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于①,在上单调递减,所以①正确;对于②,函数与的图象没有交点,即没有零点,所以②错误;对于③,由函数图象的对称性可知③错误;对于④,函数和图象关于原点对称,则中用代替,用代替,可得,所以④正确.故选:C本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.4.D【解析】

根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【详解】依题意有,①,②①②得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.5.C【解析】

利用正方体将三视图还原,观察可得最长棱为AD,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.6.B【解析】

根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选B.本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.7.D【解析】

作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.8.D【解析】

由得,分别算出和的值,从而得到的值.【详解】∵,∴,∴,当时,,∴,当时,,∴,∴,故选:D.本小题主要考查对数运算,属于基础题.9.B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质.由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B.10.D【解析】

做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数形结合即可求解.【详解】作出函数的图象如图所示,由图可知方程在上有3个不同的实数根,则在上有4个不同的实数根,当直线经过时,;当直线经过时,,可知当时,直线与的图象在上有4个交点,即方程,在上有4个不同的实数根.故选:D.本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.11.A【解析】

推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【详解】解:在四面体中,为等边三角形,边长为6,,,,,,分别取的中点,连结,则,且,,,,平面,平面,,四面体的体积为:.故答案为:.本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.12.C【解析】

对选项逐个验证即得答案.【详解】对于,,是偶函数,故选项错误;对于,,定义域为,在上不是单调函数,故选项错误;对于,当时,;当时,;又时,.综上,对,都有,是奇函数.又时,是开口向上的抛物线,对称轴,在上单调递增,是奇函数,在上是单调递增函数,故选项正确;对于,在上单调递增,在上单调递增,但,在上不是单调函数,故选项错误.故选:.本题考查函数的基本性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.2【解析】

由得,算出,再代入算出即可.【详解】,,,,解得:,,则.故答案为:2本题主要考查了向量的坐标运算,向量垂直的性质,向量的模的计算.14.1【解析】

判断函数为偶函数,周期为2,判断为偶函数,计算,,画出函数图像,根据图像到答案.【详解】知,函数为偶函数,,函数关于对称。,故函数为周期为2的周期函数,且。为偶函数,,,当时,,,函数先增后减。当时,,,函数先增后减。在同一坐标系下作出两函数在上的图像,发现在内图像共有1个公共点,则函数在上的零点个数为1.故答案为:.本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.15..【解析】

利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.【详解】∵复数满足,∴,∴,故而可得,故答案为.本题考查了复数的运算法则,共轭复数的概念,属于基础题.16..【解析】试题分析:∵,,成等差数列,∴,又∵等比数列,∴.考点:等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量的方程即可求解,考查学生等价转化的思想与方程思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2).【解析】

(1)利用已知条件化简出,当时,,当时,再利用进行化简,得出,即可证明出为等差数列;(2)根据(1)中,求出数列的通项公式,再化简出,可直接求出的前100项和.【详解】解:(1)由题意知,即,①当时,由①式可得;又时,有,代入①式得,整理得,∴是首项为1,公差为1的等差数列.(2)由(1)可得,∵是各项都为正数,∴,∴,又,∴,则,,即:.∴的前100项和.本题考查数列递推关系的应用,通项公式的求法以及裂项相消法求和,考查分析解题能力和计算能力.18.(1)证明见解析(2)【解析】

(1)要证明平面,只需证明,,即可求得答案;(2)先根据已知证明四边形为矩形,以为原点,为轴,为轴,为轴,建立坐标系,求得平面的法向量为,平面的法向量,设二面角的平面角为,,即可求得答案.【详解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四边形为矩形.以为原点,为轴,为轴,为轴,建立坐标系,如图:则:,,,,:,设平面的法向量为,即,令,则,由题平面,即平面的法向量为由二面角的平面角为锐角,设二面角的平面角为即二面角的正弦值为:.本题主要考查了求证线面垂直和向量法求二面角,解题关键是掌握线面垂直判断定理和向量法求二面角的方法,考查了分析能力和计算能力,属于中档题.19.(I);(Ⅱ)【解析】

(Ⅰ)设等差数列的公差为,则依题设.由,可得.由,得,可得.所以.可得.(Ⅱ)设,则.即,可得,且.所以,可知.所以,所以数列是首项为4,公比为2的等比数列.所以前项和.考点:等差数列通项公式、用数列前项和求数列通项公式.20.(1);(2)【解析】

(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2)将直线参数方程代入圆的普通方程,可得,,而根据直线参数方程的几何意义,知,代入即可解决.【详解】(1)直线的参数方程为(为参数),消去;得曲线的极坐标方程为.由,,,可得,即曲线的直角坐标方程为;(2)将直线的参数方程(为参数)代入的方程,可得,,设,是点对应的参数值,,,则.本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容易题.21.(1)详见解析;(2).【解析】

(1)取中点,连,可得,结合平面EAD⊥平面ABCD,可证平面ABCD,进而有,再由底面是菱形可得,可得,可证得平面,即可证明结论;(2)设底面边长为,由EFAB,AB=2EF,,求出体积,建立的方程,即可求出结论.【详解】(1)取中点,连,底面ABCD为菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD为菱形,,为中点,,平面,平面平面,;(2)设菱形ABCD的边长为,则,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论