版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省蓬莱市中考数学真题分类(平行线的证明)汇编单元测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图点E在BC的延长线上,则下列条件中,不能判定ABCD的是(
)A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°2、如图,已知中,,若沿图中虚线剪去,则等于(
)A.90° B.135° C.270° D.315°3、在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等边三角形 B.锐角三角形 C.钝角三角形 D.直角三角形4、如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15,则∠2=()A.95 B.105 C.115 D.1255、在中,,则为(
)三角形.A.锐角 B.直角 C.钝角 D.等腰6、如图,点E在射线AB上,要ADBC,只需(
)A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°7、如图,∠C=88°=∠D,AD与BE相交于点E,若∠DBC=23°,则∠CAE的度数是()A.23° B.25° C.27° D.无法确定8、在四边形ABCD中,如果∠B+∠C=180°,那么
()A.AB∥CD B.AD∥BC C.AB与CD相交 D.AB与DC垂直第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=_____度.2、下列命题中,其逆命题成立的是__.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.3、用反证法证明:“如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.第一步应假设:______.4、同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a________c.若a∥b,b∥c,则a________c.若a∥b,b⊥c,则a________c.5、如图,,的平分线相交于点,的平分线相交于点,,的平分线相交于点……以此类推,则的度数是___________(用含与的代数式表示).6、如图,将长方形纸片分别沿,折叠,点,恰好重合于点,,则__________.7、如图,点D是△ABC两条角平分线AP、CE的交点,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.三、解答题(7小题,每小题10分,共计70分)1、已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2.求证:BE∥CF.证明:∵AB⊥BC,CD⊥BC(已知)∴∠ABC=90°,∠BCD=90°()即∠1+∠3=90°,∠2+∠4=90°又∵∠1=∠2()∴=()∴BE∥CF()2、如图,在中,,,AD是的角平分线,求的度数.3、点E在射线DA上,点F、G为射线BC.上两个动点,满足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如图,当点G在F右侧时,求证:;(2)如图,当点G在BF左侧时,求证:;(3)如图,在(2)的条件下,P为BD延长线上一点,DM平分∠BDG,交BC于点M,DN平分∠PDM,交EF于点N,连接NG,若DG⊥NG,,求∠B的度数.4、用反证法证明:一个三角形中不能有两个角是直角.5、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.6、如图,直线分别与直线,交于点,.平分,平分,且∥.求证:∥.7、如图所示,已知,试判断与的大小关系,并说明理由.-参考答案-一、单选题1、C【解析】【分析】根据平行线的判定定理进行逐一分析解答即可.【详解】解:A、正确,符合“内错角相等,两条直线平行”的判定定理;B、正确,符合“同位角相等,两条直线平行”的判定定理;C、错误,若∠3=∠4,则AD∥BE;D、正确,符合“同旁内角互补,两条直线平行”的判定定理;故选:C.【考点】本题考查的是平行线的判定定理,比较简单.2、C【解析】【分析】如图(见解析),先根据三角形的外角性质可得,再根据邻补角的定义即可得.【详解】如图,由三角形的外角性质得:,,,故选:C.【考点】本题考查了三角形的外角性质、邻补角,熟练掌握三角形的外角性质是解题关键.3、D【解析】【分析】由于∠A-∠C=∠B,再结合∠A+∠B+∠C=180°,易求∠A,进而可判断三角形的形状.【详解】∵∠A-∠C=∠B,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故选D.【考点】本题考查了三角形内角和定理,求出∠A的度数是解题的关键.4、B【解析】【分析】利用垂直定义和三角形内角和定理计算出∠ADC的度数,再利用平行线的性质可得∠3的度数,再根据邻补角的性质可得答案.【详解】解:∵AC⊥AB,∴∠A=90,∵∠1=15,∴∠ADC=180-90-15=75,∵l1∥l2,∴∠3=∠ADC=75,∴∠2=180-75=105,故选:B.【考点】此题主要运用垂直定义、三角形内角和定理以及平行线的性质,解决角之间的关系,本题关键是掌握两直线平行,同位角相等.5、B【解析】【分析】根据分别设出三个角的度数,再根据三角形的内角和为180°列出一个方程,解此方程即可得出答案.【详解】∵∴可设∠A=x,∠B=2x,∠C=3x根据三角形的内角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案选择B.【考点】本题主要考查的是三角形的基本概念.6、A【解析】【分析】根据平行线的判定定理:同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行,逐项进行判断,即可求解.【详解】解:∵∠A=∠CBE,∴ADBC.故选:A.【考点】本题考查了平行线的判定,解题的关键是掌握平行线的判定方法.7、A【解析】【分析】利用三角形的内角和180°和对顶角相等求解即可.【详解】解:∵∠C+∠CEA+∠CAE=180°,∠D+∠DEB+∠DBC=180°,又∠C=∠D,∠CEA=∠DEB,∴∠CAE=∠DBE=23°.故选:A.【考点】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.8、A【解析】【分析】∠B与∠C是直线AB,CD被直线BC所截构成的同旁内角,根据∠B+∠C=180°,得到AB∥CD.【详解】∵∠B+∠C=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【考点】正解找出“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题1、120【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【详解】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.【考点】此题考查了平行线的性质,解题的关键是注意掌握辅助线的作法,注意数形结合思想的应用.2、①④##④①【解析】【详解】把一个命题的条件和结论互换就得到它的逆命题,再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.①两直线平行,同旁内角互补,正确;②如果两个角相等,那么它们是直角,错误;③如果两个实数的平方相等,那么这两个实数相等,错误;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,正确.故答案为①④.3、这两条直线不平行【解析】【分析】本题需先根据已知条件和反证法的特点进行证明,即可求出答案.【详解】证明:已知两条直线都和第三条直线平行;
假设这两条直线不平行,则两条直线有交点,因为过直线外一点有且只有一条直线与已知直线平行因此,两条直线有交点时,它们不可能同时与第三条直线平行因此假设与结论矛盾.故假设不成立,即如果两条直线都和第三条直线平行,那么这两条直线也互相平行.故答案为:这两条直线不平行.【考点】本题主要考查了反证法,在解题时要根据反证法的特点进行证明是本题的关键.4、
∥;
∥;
⊥【解析】【详解】①∵a⊥b,b⊥c,∴a//c(垂直同一条直线的两直线互相平行)②a∥b,b∥c,∴a//c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)③如图所示:∵a∥b,∴∠1=∠2,又∵b⊥c,∴∠2=90°,∴∠1=∠2=90°,即a⊥c.故答案是://,//,⊥.5、【解析】【分析】由∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,而P1B、P1C分别平分∠ABC和∠ACD,得到∠ACD=2∠P1CD,∠ABC=2∠P1BC,于是有∠A=2∠P1,同理可得∠P1=2∠P2,即∠A=22∠P2,因此找出规律.【详解】∵P1B、P1C分别平分∠ABC和∠ACD,∴∠ACD=2∠P1CD,∠ABC=2∠P1BC,而∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,∴∠A=2∠P1,∴∠P1=∠A,同理可得∠P1=2∠P2,即∠A=22∠P2,∴∠A=2n∠Pn,∴∠Pn=.故答案为:.【考点】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质,难度适中.6、##54度【解析】【分析】根据翻折可得∠MAB=∠BAP,∠NAC=∠PAC,得∠MAB+∠NAC=90°,再由,即可解决问题.【详解】解:根据翻折可知:∠MAB=∠BAP,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC180°=90°,∴∠MAB+∠NAC=90°,∵∠NAC=∠MAB,∴∠NAC+∠NAC=90°,∴∠NAC=54°.故答案为:54°.【考点】本题主要考查翻折变换,熟练掌握和应用翻折的性质是解题的关键.7、110【解析】【分析】根据CE,AP分别平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根据三角形内角和定理,求出∠ADC即可.【详解】解:∵CE,AP分别平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案为:110.【考点】本题考查了角平分线的性质和三角形内角和定理,熟练掌握了角平分线的性质是解题的关键.三、解答题1、见解析【解析】【分析】由垂直的定义得∠ABC=90°,∠BCD=90°,即∠1+∠3=90°,∠2+∠4=90°,求出∠3=∠4,即可得出结论.【详解】解:,∵AB⊥BC,CD⊥BC(已知),∴∠ABC=90°,∠BCD=90°(垂直的定义),即∠1+∠3=90°,∠2+∠4=90°,又∵∠1=∠2(已知),∴∠3=∠4(等角的余角相等),∴BE∥CF(内错角相等,两直线平行).【考点】本题考查了平行线的判定以及垂直的定义;熟练掌握平行线的判定方法是解题的关键.2、102°【解析】【分析】由三角形内角和可得∠BAC=80°,然后由角平分线的定义可得,然后再根据三角形内角和可求解.【详解】解:在中,(三角形内角和定理).∵,(已知),∴(等式的性质).∵AD平分(已知),∴(角平分线的定义).在中,(三角形内角和定理).∵(已知),(已证),∴(等式的性质).【考点】本题主要考查角平分线的定义及三角形内角和,熟练掌握角平分线的定义及三角形内角和是解题的关键.3、(1)见解析;(2)见解析;(3)60°【解析】【分析】(1)根据角平分线的定义即可得到∠BDG=∠ADG,从而可得∠ADG=∠DGB,则,可得∠DEF=∠EFG,即可得到∠DBF=∠EFG,从而证明;(2)过点G作交AD于K,则,可得∠BDG=∠DGK,∠GEF=∠KGE,即可得到∠DGE=∠BDG+∠FEG;(3)设,则,,由角平分线的定义可得,然后分别求出,,进行求解即可.【详解】解:(1)∵DG平分∠BDE,∴∠BDG=∠ADG,又∵∠BDG=∠BGD,∴∠ADG=∠DGB,∴,∴∠DEF=∠EFG,∵∠DBF=∠DEF,∴∠DBF=∠EFG,∴;(2)过点G作交AD于K,同理可证,∴,∴∠BDG=∠DGK,∠GEF=∠KGE,∴∠DGE=∠DGK+∠KGE,∴∠DGE=∠BDG+∠FEG;(3)设,则,,,∵DN平分∠PDM,∴,∴,,∵DG⊥NG,∴,∴,∵,∴,∵,∴,∴,∴.【考点】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,余角的计算,解题的关键在于能够熟知平行线的性质与判定条件.4、见解析.【解析】【分析】假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,由此即可证明.【详解】证明:假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,所以一个三角形中不能有两个直角.【考点】本题主要考查了反证法,解题的关键在于能够熟练掌握反证法的步骤.5、(1)平行;(2)115°.【解析】【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准混凝土搅拌车运输合同范本下载
- 签协议书彩纸
- 门头移交协议书
- 2025年山东安全员A证题库及答案解析
- 道路从业教育咋考试及答案解析
- 码垛机安全培训考试题及答案解析
- 商检危包从业考试及答案解析
- 2025-2030绿氢电解槽技术路线经济性比较与项目投资决策要素报告
- 2025-2030细胞治疗产业化分析及质量控制研究报告
- 2025-2030纳米药物递送系统产业化障碍与突破路径分析
- 酒店股权激励管理办法
- 公司团队管理课件下载
- DB42∕T 2232-2024 湖北省水利工程护坡护岸参考设计图集
- 初中生劳动教育考试试题及答案
- 2025年吉林普通高中学业水平选择性考试历史真题及答案
- JJG(烟草)29-2011烟草加工在线水分仪检定规程
- 2024-2025学年广东深圳市宝安区宝安中学集团七年级上学期期中历史试卷
- T/SXCAS 015-2023全固废低碳胶凝材料应用技术标准
- 消防中控证考试题及答案
- 制造业智能化改造和数字化转型 诊断工作指引
- 2025年中国厚膜加热器行业市场占有率及投资前景预测分析报告
评论
0/150
提交评论